Terroir 2020 banner
IVES 9 IVES Conference Series 9 Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Abstract

Aim: Climate modelling in viticulture introduced new challenges such as high spatio-temporal monitoring and the use of dependable time series and robustness modelling methods. Land surface temperature (LST) is widely used and particularly MODIS thermal satellite images due to their high temporal resolution (four images per day). However, this data is not completely adapted to regional scale with its medium spatial resolution (1-km). Downscaling methods can improve spatial resolution using machine learning algorithms implementing multiple predictors as topographical variables and vegetation indices. In the last decades, classical bioclimatic temperature-based indices showed a specific spatial distribution depending on topographical variables and at once a significantly non-correlation with vegetation growing trend.  

Methods and Results: In the current study, an assessment of SVM Machine learning method was used to downscaling daily LST using topographical variables and vegetation indices as predictors at multiple spatial resolution. The aims of this study were to (1) evaluate daily LST time series through 2012-2018 period, (2) assess the impact of topographical variables and evolution of vegetation indices during vegetative season and (3) calculation of bioclimatic indices on the wine-growing area of the Gironde The dataset included: 1) daily time series of MODIS LST at 1-km (MOD11A1 and MYD11A1) and 2) topographical variables derived from Digital Elevation Model at 500 m (GMTED10). The first step was the pre-processing and reconstruction of time series. The second step was the downscaling of LST using SVM with topographical variables as predictors. For each day, a model was calibrated and validated to predict daily LST at finer spatial scale. The third step was the calculation of bioclimatic indices (Winkler and Huglin). The methodology was applied for the fourth LST MODIS products acquired at different times. For example, for the 2012 wine growing season Huglin index and Winkler index were calculated with the daily predicted LST (without vegetation indices as predictors but only topographical variables) on the Gironde area and have a globally similar spatial structure. The lowest values (≈ 1900°C for Huglin and 1340°C for Winkler) are concentrated on the coastline to the west and south of the Gironde. The highest index values (> 2000°C for Huglin and > 1700°C for Winkler) are located from the centre of the Gironde to the north-east. These warmer sectors are concentrated in the valley bottoms of the Dordogne and Gironde with higher values in the south of Libourne. LST predictions should be downscaled for the whole period (2012-2019) and the second experiment of the downscaling method includes vegetation indices as predictors.

Conclusion: 

The advantage of LST is their temporal and spatial covers in all the areas. However, data availability and bias must be taken into account and minimized. 

Significance and Impact of the Study:  At the scale of Gironde region, this downscaling method has been tested for the first time with MODIS Land Surface Temperature derived from thermal satellite images in a wine-growing context.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gwenaël Morin1*, Renan Le Roux2, Pierre-Gilles Lemasle1 and Hervé Quénol1

1LETG-Rennes, UMR 6554 CNRS – Université Rennes 2, Place du Recteur Henri Le Moal, Rennes – France 
2CIRAD, Forêts et Sociétés, F-34398 Montpellier, France

Contact the author

Keywords

Climate modelling, topographical downscaling, thermal satellite imagery, bioclimatic indices, Gironde

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Gamay And Gamaret Winemaking Processes Using Stems: Impact On The Wine Aromatic Composition.

Stems may bring various benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity.

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.

Protected Designation of Origin (D.P.O.) Valdepeñas: classification and map of soils

The objective of the work described here is the elaboration of a map of the different types of vineyard soils that to guide the famers in the choice of the most productive vine rootstocks and varieties. 90 vineyard soils profiles were analysed in the entire territory of the Origen Denominations of Valdepeñas. The sampling was carried out in 2018 (June to October) by making a sampling grid, followed by photointerpretation and control in the field. The studied soils can be grouped into 9 different soil types (according to FAO 2006 classification): Leptosols, Regosols, Fluvisols, Gleysols, Cambisols, Calcisols, Luvisols and Anthrosols. A map showing the soil distribution with different type of soils has been made with the ArcGIS program. Regarding to the choice of rootstock, Calcisoles are soils with a high active limestone content, so the rootstocks used in these soils must be resistant to this parameter; Luvisols are deep soils with high clay content, so they will support vigorous rootstocks. Because the cartographic units are composed of two or more subgroups, with are associated in variable proportions, 9 different soil associations have been established; Unit 1: Leptosols, Cambisols and Luvisols (80%, 15% and 5% respectively); Unit 2: Cambisols with Regosols and Luvisols (40%, 30% and 30% respectively); Unit 3: Cambisols and Gleysols with Regosols (40%, 40% and 20% respectively); Unit 4: Regosols with Cambisols, Leptosols and Calcisols (40%, 30%, 15% and 15% respectively); Unit 5: Cambisols, Leptosols, Calcisols and Regosols (25% each of them); Unit 6: Luvisols with Cambisol and Calcisols (80%, 10% and 10% respectively); Unit 7: Luvisols and Calcisols with Cambisols (40%, 40% and 20% respectively); Unit 8: Calcisols with, Cambisols and Luvisols (80%, 10% and 10% respectively); Unit 9: Anthrosols. These study allow to elaborate the first map of vineyard soils of this Protected Designation of Origin in Castilla-La Mancha.

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Enhancing the color traits of ‘Nebbiolo’ and ‘Dolcetto’ grapes: the role of abscisic acid during ripening

The red Italian variety Nebbiolo (Vitis vinifera L.), used in the production of the prestigious Barolo and Barbaresco wines, is renowned for its aromatic and structural complexity but also for its low color intensity.