Terroir 2020 banner
IVES 9 IVES Conference Series 9 Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Abstract

Aim: Climate modelling in viticulture introduced new challenges such as high spatio-temporal monitoring and the use of dependable time series and robustness modelling methods. Land surface temperature (LST) is widely used and particularly MODIS thermal satellite images due to their high temporal resolution (four images per day). However, this data is not completely adapted to regional scale with its medium spatial resolution (1-km). Downscaling methods can improve spatial resolution using machine learning algorithms implementing multiple predictors as topographical variables and vegetation indices. In the last decades, classical bioclimatic temperature-based indices showed a specific spatial distribution depending on topographical variables and at once a significantly non-correlation with vegetation growing trend.  

Methods and Results: In the current study, an assessment of SVM Machine learning method was used to downscaling daily LST using topographical variables and vegetation indices as predictors at multiple spatial resolution. The aims of this study were to (1) evaluate daily LST time series through 2012-2018 period, (2) assess the impact of topographical variables and evolution of vegetation indices during vegetative season and (3) calculation of bioclimatic indices on the wine-growing area of the Gironde The dataset included: 1) daily time series of MODIS LST at 1-km (MOD11A1 and MYD11A1) and 2) topographical variables derived from Digital Elevation Model at 500 m (GMTED10). The first step was the pre-processing and reconstruction of time series. The second step was the downscaling of LST using SVM with topographical variables as predictors. For each day, a model was calibrated and validated to predict daily LST at finer spatial scale. The third step was the calculation of bioclimatic indices (Winkler and Huglin). The methodology was applied for the fourth LST MODIS products acquired at different times. For example, for the 2012 wine growing season Huglin index and Winkler index were calculated with the daily predicted LST (without vegetation indices as predictors but only topographical variables) on the Gironde area and have a globally similar spatial structure. The lowest values (≈ 1900°C for Huglin and 1340°C for Winkler) are concentrated on the coastline to the west and south of the Gironde. The highest index values (> 2000°C for Huglin and > 1700°C for Winkler) are located from the centre of the Gironde to the north-east. These warmer sectors are concentrated in the valley bottoms of the Dordogne and Gironde with higher values in the south of Libourne. LST predictions should be downscaled for the whole period (2012-2019) and the second experiment of the downscaling method includes vegetation indices as predictors.

Conclusion: 

The advantage of LST is their temporal and spatial covers in all the areas. However, data availability and bias must be taken into account and minimized. 

Significance and Impact of the Study:  At the scale of Gironde region, this downscaling method has been tested for the first time with MODIS Land Surface Temperature derived from thermal satellite images in a wine-growing context.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gwenaël Morin1*, Renan Le Roux2, Pierre-Gilles Lemasle1 and Hervé Quénol1

1LETG-Rennes, UMR 6554 CNRS – Université Rennes 2, Place du Recteur Henri Le Moal, Rennes – France 
2CIRAD, Forêts et Sociétés, F-34398 Montpellier, France

Contact the author

Keywords

Climate modelling, topographical downscaling, thermal satellite imagery, bioclimatic indices, Gironde

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

“Gheo” per la vitivinicoltura: un progetto per la produzione dl vini dl alta qualità

Il settore primario, ed in particolare quello agricolo, sta attraversando un periodo partico­larmente delicato. Sia gli aspetti della produzione che quelli della commercializzazione ven­gono infatti messi in discussione da nuovi indirizzi economici e tecnologici.

La place du terroir dans le processus de patrimonialisation : l’exemple des paysages culturels viticoles du patrimoine mondial de l’Unesco

Eleven wine-growing sites are now on the UNESCO World Heritage List as Cultural Landscapes. If the viticultural character of these sites constitutes the main argument for the demonstration of their heritage value, the terroir and its biophysical and environmental characteristics tend however to appear in a minor mode compared to the aesthetic and cultural dimensions. In other words, the “specific characteristics of the soil, topography, climate, landscape and biodiversity” (OIV definition) are most often used as descriptive elements in the presentation of the sites, but it is more the aesthetic, historical,

Switch genes as a key to understand the grapevine ripening disorder berry Shrivel?

The ripening of grapevine berries encompasses complex morphological and physiological processes, especially at veraison. Berry shrivel (BS) is a ripening physiological disorder affecting grape berries with visible symptoms appearing short after veraison. The main symptoms of BS are a strong reduction in sugar accumulation, inhibited anthocyanin biosynthesis and high pH values. The most popular red grape cultivar in Austria “Blauer Zweigelt” (Vitis vinifera L.) is specifically prone to develop the BS ripening disorder and up to date a no specific cause or causes could be identified. Recently omics approaches have identified and characterized key processes during grapevine ripening. Among them a small subset of genes, called SWITCH, have been described as markers for the onset of the ripening process in fruits.

Soil survey and chemical parameters evaluation in viticultural zoning

The most recent methodological developments in soil survey and land evaluation, that can be taken as reference in the viticultural field, go over usage of the GIS and database. These informatic tools, which begin to be widely utilised, consent to realise evaluations at different geographic scale and with different data quality and quantity in entrance.

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.