Terroir 2020 banner
IVES 9 IVES Conference Series 9 Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Abstract

Aim: Climate modelling in viticulture introduced new challenges such as high spatio-temporal monitoring and the use of dependable time series and robustness modelling methods. Land surface temperature (LST) is widely used and particularly MODIS thermal satellite images due to their high temporal resolution (four images per day). However, this data is not completely adapted to regional scale with its medium spatial resolution (1-km). Downscaling methods can improve spatial resolution using machine learning algorithms implementing multiple predictors as topographical variables and vegetation indices. In the last decades, classical bioclimatic temperature-based indices showed a specific spatial distribution depending on topographical variables and at once a significantly non-correlation with vegetation growing trend.  

Methods and Results: In the current study, an assessment of SVM Machine learning method was used to downscaling daily LST using topographical variables and vegetation indices as predictors at multiple spatial resolution. The aims of this study were to (1) evaluate daily LST time series through 2012-2018 period, (2) assess the impact of topographical variables and evolution of vegetation indices during vegetative season and (3) calculation of bioclimatic indices on the wine-growing area of the Gironde The dataset included: 1) daily time series of MODIS LST at 1-km (MOD11A1 and MYD11A1) and 2) topographical variables derived from Digital Elevation Model at 500 m (GMTED10). The first step was the pre-processing and reconstruction of time series. The second step was the downscaling of LST using SVM with topographical variables as predictors. For each day, a model was calibrated and validated to predict daily LST at finer spatial scale. The third step was the calculation of bioclimatic indices (Winkler and Huglin). The methodology was applied for the fourth LST MODIS products acquired at different times. For example, for the 2012 wine growing season Huglin index and Winkler index were calculated with the daily predicted LST (without vegetation indices as predictors but only topographical variables) on the Gironde area and have a globally similar spatial structure. The lowest values (≈ 1900°C for Huglin and 1340°C for Winkler) are concentrated on the coastline to the west and south of the Gironde. The highest index values (> 2000°C for Huglin and > 1700°C for Winkler) are located from the centre of the Gironde to the north-east. These warmer sectors are concentrated in the valley bottoms of the Dordogne and Gironde with higher values in the south of Libourne. LST predictions should be downscaled for the whole period (2012-2019) and the second experiment of the downscaling method includes vegetation indices as predictors.

Conclusion: 

The advantage of LST is their temporal and spatial covers in all the areas. However, data availability and bias must be taken into account and minimized. 

Significance and Impact of the Study:  At the scale of Gironde region, this downscaling method has been tested for the first time with MODIS Land Surface Temperature derived from thermal satellite images in a wine-growing context.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gwenaël Morin1*, Renan Le Roux2, Pierre-Gilles Lemasle1 and Hervé Quénol1

1LETG-Rennes, UMR 6554 CNRS – Université Rennes 2, Place du Recteur Henri Le Moal, Rennes – France 
2CIRAD, Forêts et Sociétés, F-34398 Montpellier, France

Contact the author

Keywords

Climate modelling, topographical downscaling, thermal satellite imagery, bioclimatic indices, Gironde

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

The selection of Vitis vinifera L. cultivars based on berry texture, iPBS genetic markers, and noble rot susceptibility analysis

The selection of a suitable grape variety (Vitis vinifera L.) for specific viticulture and oenology objectives is a considerable challenge in the context of climate change.

Terroir aspects of harvest timing in a cool climate wine region: physiology, berry skin phenolic composition and wine quality

Preliminary experiment of harvest timing was carried out in Eger wine district, Hungary in 2009. In situ physiological responses, berry quality parameters and wine quality of the Kékfrankos grapevine were studied at two growing sites (Eger-K6lyuktet6 – non-stressed, flat vineyard, and Eger-Nagyeged hill – water stressed, steep slope vineyard).

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

Grape berry size is a key factor in determining New Zealand Pinot noir wine composition

Making high quality but affordable Pinot noir (PN) wine is challenging in most terroirs and New Zealand’s (NZ) situation is no exception. To increase the probability of making highly typical PN wines producers choose to grow grapes in cool climates on lower fertility soils while adopting labour intensive practices. Stringent yield targets and higher input costs necessarily mean that PN wine cost is high, and profitability lower, in line-priced varietal wine ranges. To understand the reasons why higher yielding vines are perceived to produce wines of lower quality we have undertaken an extensive study of PN in NZ. Since 2018, we established a network of twelve trial sites in three NZ regions to find individual vines that produced acceptable commercial yields (above 2.5kg per vine) and wines of composition comparable to “Icon” labels. Approximately 20% of 660 grape lots (N = 135) were selected from within a narrow juice Total Soluble Solids (TSS) range and made into single vine wines under controlled conditions. Principal Component Analysis of the vine, berry, juice and wine parameters from three vintages found grape berry mass to be most effective clustering variable. As berry mass category decreased there was a systematic increase in the probability of higher berry red colour and total phenolics with a parallel increase in wine phenolics, changed aroma fraction and decreased juice amino acids. The influence of berry size on wine composition would appear stronger than the individual effects of vintage, region, vineyard or vine yield. Our observations support the hypothesis that it is possible to produce PN wines that fall within an “Icon” benchmark composition range at yields above 2.5kg per vine provided that the Leaf Area:Fruit Weight ratio is above 12cm2 per g, mean berry mass is below 1.2g and juice TSS is above 22°Brix.