Terroir 2020 banner
IVES 9 IVES Conference Series 9 Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Abstract

Aim: Climate modelling in viticulture introduced new challenges such as high spatio-temporal monitoring and the use of dependable time series and robustness modelling methods. Land surface temperature (LST) is widely used and particularly MODIS thermal satellite images due to their high temporal resolution (four images per day). However, this data is not completely adapted to regional scale with its medium spatial resolution (1-km). Downscaling methods can improve spatial resolution using machine learning algorithms implementing multiple predictors as topographical variables and vegetation indices. In the last decades, classical bioclimatic temperature-based indices showed a specific spatial distribution depending on topographical variables and at once a significantly non-correlation with vegetation growing trend.  

Methods and Results: In the current study, an assessment of SVM Machine learning method was used to downscaling daily LST using topographical variables and vegetation indices as predictors at multiple spatial resolution. The aims of this study were to (1) evaluate daily LST time series through 2012-2018 period, (2) assess the impact of topographical variables and evolution of vegetation indices during vegetative season and (3) calculation of bioclimatic indices on the wine-growing area of the Gironde The dataset included: 1) daily time series of MODIS LST at 1-km (MOD11A1 and MYD11A1) and 2) topographical variables derived from Digital Elevation Model at 500 m (GMTED10). The first step was the pre-processing and reconstruction of time series. The second step was the downscaling of LST using SVM with topographical variables as predictors. For each day, a model was calibrated and validated to predict daily LST at finer spatial scale. The third step was the calculation of bioclimatic indices (Winkler and Huglin). The methodology was applied for the fourth LST MODIS products acquired at different times. For example, for the 2012 wine growing season Huglin index and Winkler index were calculated with the daily predicted LST (without vegetation indices as predictors but only topographical variables) on the Gironde area and have a globally similar spatial structure. The lowest values (≈ 1900°C for Huglin and 1340°C for Winkler) are concentrated on the coastline to the west and south of the Gironde. The highest index values (> 2000°C for Huglin and > 1700°C for Winkler) are located from the centre of the Gironde to the north-east. These warmer sectors are concentrated in the valley bottoms of the Dordogne and Gironde with higher values in the south of Libourne. LST predictions should be downscaled for the whole period (2012-2019) and the second experiment of the downscaling method includes vegetation indices as predictors.

Conclusion: 

The advantage of LST is their temporal and spatial covers in all the areas. However, data availability and bias must be taken into account and minimized. 

Significance and Impact of the Study:  At the scale of Gironde region, this downscaling method has been tested for the first time with MODIS Land Surface Temperature derived from thermal satellite images in a wine-growing context.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Gwenaël Morin1*, Renan Le Roux2, Pierre-Gilles Lemasle1 and Hervé Quénol1

1LETG-Rennes, UMR 6554 CNRS – Université Rennes 2, Place du Recteur Henri Le Moal, Rennes – France 
2CIRAD, Forêts et Sociétés, F-34398 Montpellier, France

Contact the author

Keywords

Climate modelling, topographical downscaling, thermal satellite imagery, bioclimatic indices, Gironde

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Le zonage viticole: instrument pour la récuperation d’un ancien cépage des collines de Conegliano (Verdiso – V. vinifera)

Dans le contexte viticole actuel, la prise de conscience que chaque cépage ne trouve son expression qualitative maximale que dans certains terroirs bien définis

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

Water is the most abundant active compound in wine!

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition.

Investigation of VvDXS function and its effects on muscat flavor levels

In the present study the connection between the positional candidate gene VvDXS and muscat flavor was evaluated by investigating the expression profiles in the berries from a Muscat-type cultivar and a neutral cultivar and its nucleotide diversity of full ORF on grapevine accessions.