Simulating the impact of climate change on viticultural systems in various European vineyards

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010). They vary from short-term impacts on wine quality and style, to long-term issues such as varietal suitability and the economic sustainability of traditional wine growing regions (Schultz and Jones 2010; Quénol, 2014). Within the context of a global changing climate, we have decided to develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. 

Methods and Results: Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), present a generic modeling environment for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability, etc.) as well as production strategies and adaptation rules according to climate change scenarios.Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Agents are distinguished according to their objectives: “Supervisors” Agent plays an overseeing role in the model, “Winegrower” Agents aim to grow grapes and produce wine that meets precise specifications according to their end-product goals and “Vine” Agents are grape production entities. The relationships between these three types of agents determine the production strategies adopted by the winegrowers. According to two scenarios of climate change, several prospective simulations have been implemented, in the context of the European ADVICLIM project (, to compare adaptation strategies at European scale. Through different experiments in France, United Kingdom, Romania, Germany and Spain, the SEVE model provides potential adaptation strategies tendencies from short-term to long-term adjustment. Simulation results underline that small-scale variability is strongly linked with vine phenology and ripeness potential. Over the next century, winegrowers will likely be confronted with increasing temperatures and changing rainfall patterns that will have important impacts on agronomic practices (increase/decrease of fungicide treatments or soil management practices depending on site and scenario) and adaptation strategies (management of frost risk or heat waves, plant material adaptation, change in vine training system, etc.).

Conclusion: The modelling approach presented in this paper addresses the impact of environmental conditions and constraints on vine phenology and management strategies. The SEVE model is able to reproduce the dynamics of vine growing and agronomic choices and practices according to climate variability. In the context of climate change, such a dynamic model will help to better assess potential impacts on vine behaviour and to identify potential adaptation pathways.

Significance of and Impact of the Study: As climate is a key factor of grapevine growth and fruit ripening, winegrowers are constantly adjusting their plot- to farm-level decision-making in response to climate variations. With a global changing climate, winegrowers are therefore required to continue developing adaptation strategies that deal with both short- and long-term climate changes, while likewise accounting for local vulnerability to avoid mal-adaptation. Based on a modelling approach, this study aims to identify and prioritise some rational adaptation strategies at local vineyard scales.

Authors: Cyril Tissot1*, Mathias Rouan1, Théo Petitjean2, Laurence David1, Renan Le Roux3, Hervé Quenol4, Etienne Neethling5, Laure de Resseguier2, Cornelis van Leeuwen2, Irima Liviu6, Cristi Patriche6

1UMR 6554 CNRS LETG, Brest, France
2ISVV, Villenave-d’Ornon, France
3CIRAD, Montpellier, France
4UMR 6554 CNRS LETG, Rennes, France
5ESA, Angers, France
6University of Agricultural Sciences, Iasi, Romania


Keywords: Grapevine, production strategies, climate change, multi-agents model, adaptation

Related Posts

Share via
Copy link
Powered by Social Snap