Terroir 2020 banner
IVES 9 IVES Conference Series 9 Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Abstract

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in vineyards that do not receive irrigation. We measured juice δ13C at harvest across multiple vineyards with the aim to discriminate sub-regions based on soil water availability due to variation in climate, soil and management (especially supplementary irrigation). We explored the relationship between δ13C and pruning mass, yield and fruit parameters important for wine quality.

Methods and Results: The study was conducted in 2019 in irrigated Shiraz vineyards spread across six sub-regions in the Barossa Valley, SA. A total of 63 samples collected at harvest (approx. 25⁰ Brix) were subject to δ13C analysis, this included three samples from each of 21 vineyards. Yield, pruning mass and berry maturity (total soluble solids, titratable acidity and pH) and quality parameters (total tannins, anthocyanins and phenolics) were assessed. Carbon isotope composition of the grape sugars was measured on autoclaved berry juice using a continuous flow isotope ratio mass spectrometer. δ13C discriminated between sub-regions and within vineyards. Vineyards from sub-regions, Eden Valley, Central and Northern Grounds had lower δ13C than vineyards from the Western Ridge and Eastern Edge, with the Southern Grounds. Similarly, zones within a vineyard with lower plant biomass, as indicated by PCD imagery, showed lower δ13C. A significant relationship was observed between δ13C and yield (r = -0.72***), pruning mass (r = -0.54**), anthocyanins (r = 0.65**) and total phenolics (r = 0.61**). Higher water stress (< δ13C) during the season was associated with a lower yield, lower pruning mass but with higher total anthocyanins and phenolics. No significant relationships between δ13C and other berry traits (including total tannins) were observed.

Conclusions: 

δ13C is a useful method to integrate and distinguish components of terroir that affect vine productivity and some fruit quality parameters which remains sound even when the vines receive irrigation. 

Significance and Impact of the Study: This study shows the potential use of δ13C to discriminate between blocks with different moisture availability that may induce changes in yield and some aspects of fruit quality. δ13C may emerge as a proxy for terroir in zoning studies of irrigated vines, but further validation is needed using cluster analysis that integrates soil, climate and fruit composition geospatially across multiple seasons.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Marcos Bonada1, Cassandra Collins2, Paul Petrie1

1South Australian Research and Development Institute, Urrbrae, Australia 2The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, Glen Osmond, Australia

Keywords

Carbon isotope discrimination, water availability, grapevine growth, fruit composition, terroir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Callinikos: the new white table grapeseedless variety for biological produce

This paper presents is the create, the study and amplographic description the new seedless grape variety «Callinicos» was created by P. Zamanidis at the Athens Vine Department

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

About long time and vine quality modelisation e pistemological appro ach to geographical viticulture

This work began as an intellectual game, in order to discuss the notion of wine quality in terms of terroir and territory spatial structure. Vine and wine quality has long been questioned by scientists. Each discipline approaching it with his own tools.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.