Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

Abstract

Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments on Chilean Cabernet-Sauvignon, and ii) develop machine learning models to predict its quality. 

Methods and Results: 100 vineyard plots representing the typical percentage distribution of geographical and viticulture impact factors on Chilean Cabernet-Sauvignon were monitored across two seasons, 2018 and 2019. Chemical analysis of grapes and wines included the quantification of phenolic compounds by liquid chromatography and UV-vis spectral measurements, aroma compounds by gas chromatography mass spectrometry (GC/MS), and maturity parameters. Spearman correlation and Principal component analysis (PCA) identified correlations of several non-volatile and volatile compounds with quality, mainly by means of their anthocyanins, flavonols, flavan‑3‑ols, total tannins and hydroxycinnamic acids. Furthermore by trans-2-hexenol, trans-3-hexenol, hexanal, 2-isobutyl-3-methoxypyrazine (IBMP), yeast assimilable nitrogen (YAN), total soluble solids and acidity. Experimental winemaking of 600 kg per plot followed a standardized procedure, and the wines were analyzed by an expert quality rating. A sensory quality profiling for the wines was performed through a Napping Ultra Flash Profile (UFP). It revealed the distinction of three different quality levels by mainly mouthfeel attributes, and fruity and green aromas. However, neither the observed correlations of chemical analysis and sensory quality ratings, nor origin or viticulture treatment could fully explain quality. Different clustering methods, namely k-means, k-medioids and spectral clustering were evaluated in order to find categories given by the chemical analysis data itself as unsupervised machine learning. Spectral clustering led to optimum results, and independently of sample origin and viticulture traits, quality ratings were characterized to be significantly different across the clusters allowing their interpretation as quality categories. 

Conclusions: 

Chilean Cabernet-Sauvignon quality is associated with chemical quality markers known for this variety in Australia and California, including phenolic compounds, C6 alcohols and aldehydes, IBMP, maturity parameters and YAN. However, evaluation of sensory quality is fairly subjective and viticulture treatments in practical application contain interdependency, therefore it is challenging to establish supervised models involving this data. The application of unsupervised spectral clustering is proposed as an objective quality classification approach, which can be trained using supervised models for predictive purposes.

Significance and Impact of the Study: There is a high industrial need for objective quality classification. For the first time chemical quality markers for Chilean Cabernet-Sauvignon were determined, and an unsupervised machine learning approach based on these markers could be proposed for objective quality classification.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Doreen Schober1*, Martin Legues1,2, Hugo Guidez3, Jose Carlos Caris Maldonado1, Sebastian Vargas1,  Alvaro Gonzalez Rojas1

1Center for Research and Innovation (CRI), Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile
2Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Región Metropolitana, Santiago, Chile
3Institut National Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Agrocampus Ouest Campus d´Angers, France

Contact the author

Keywords

Cabernet-Sauvignon, spectral clustering, quality, terroir, vineyard management

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Assessment of the bottled storage conditions on the volatile composition and sensorial characteristics of white wines

The quality of bottled white wines is highly influenced by their storage conditions, mainly temperature, and exposure to light and oxygen (1, 2).

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.

Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

In recent decades, the scarcity of water resources in agriculture in certain areas has been aggravated by climate change, which has caused an increase in temperatures, changes in rainfall patterns, as well as an increase in the frequency of extreme phenomena such as droughts and heat waves. Although the vine is considered a drought-tolerant specie, it has to satisfy important water requirements to complete its cycle, which coincides with the hottest and driest months. Achieving sustainable viticulture in this scenario requires high levels of efficiency in the use of water, a scarce resource whose use is expected to be severely restricted in the near future. In this regard, the use of drought-tolerant varieties that are able to maintain grape yield and quality could be an effective strategy to face this change. During three consecutive seasons (2018-2020) the behavior in rainfed regime of 13 traditional red grapevine varieties of the Spain central region was studied. These varieties were cultivated in a collection at Centro de Investigación de la Vid y el Vino de Castilla-La Mancha (IVICAM-IRIAF) located in Tomelloso (Castilla-La Mancha, Spain). Yield components (yield, mean bunch and berry weight, pruning weight), physicochemical parameters of the musts (brix degree, total acidity, pH) and some physiological parameters related with water stress during ripening period (δ13C, δ18O) were analysed. The application of different statistical techniques to the results showed the existence of significant differences between varieties in their response to stressful conditions. A few varieties highlighted for their high ability to adapt to drought, being able to maintain high yields due to their efficiency in the use of water. In addition, it was possible quantify to what extent climate can be a determinant in the δ18O of musts under severe water stress conditions.

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Waste valorization in winery and distillery industry by producing biofertilizers and organic amendments

The winery and distilling spirits industry generate a remarkable amount of by-products and wasted, that are not properly managed, posing socioeconomic problems and environmental risks, due to its seasonal and polluting characteristics.