Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

Abstract

Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments on Chilean Cabernet-Sauvignon, and ii) develop machine learning models to predict its quality. 

Methods and Results: 100 vineyard plots representing the typical percentage distribution of geographical and viticulture impact factors on Chilean Cabernet-Sauvignon were monitored across two seasons, 2018 and 2019. Chemical analysis of grapes and wines included the quantification of phenolic compounds by liquid chromatography and UV-vis spectral measurements, aroma compounds by gas chromatography mass spectrometry (GC/MS), and maturity parameters. Spearman correlation and Principal component analysis (PCA) identified correlations of several non-volatile and volatile compounds with quality, mainly by means of their anthocyanins, flavonols, flavan‑3‑ols, total tannins and hydroxycinnamic acids. Furthermore by trans-2-hexenol, trans-3-hexenol, hexanal, 2-isobutyl-3-methoxypyrazine (IBMP), yeast assimilable nitrogen (YAN), total soluble solids and acidity. Experimental winemaking of 600 kg per plot followed a standardized procedure, and the wines were analyzed by an expert quality rating. A sensory quality profiling for the wines was performed through a Napping Ultra Flash Profile (UFP). It revealed the distinction of three different quality levels by mainly mouthfeel attributes, and fruity and green aromas. However, neither the observed correlations of chemical analysis and sensory quality ratings, nor origin or viticulture treatment could fully explain quality. Different clustering methods, namely k-means, k-medioids and spectral clustering were evaluated in order to find categories given by the chemical analysis data itself as unsupervised machine learning. Spectral clustering led to optimum results, and independently of sample origin and viticulture traits, quality ratings were characterized to be significantly different across the clusters allowing their interpretation as quality categories. 

Conclusions: 

Chilean Cabernet-Sauvignon quality is associated with chemical quality markers known for this variety in Australia and California, including phenolic compounds, C6 alcohols and aldehydes, IBMP, maturity parameters and YAN. However, evaluation of sensory quality is fairly subjective and viticulture treatments in practical application contain interdependency, therefore it is challenging to establish supervised models involving this data. The application of unsupervised spectral clustering is proposed as an objective quality classification approach, which can be trained using supervised models for predictive purposes.

Significance and Impact of the Study: There is a high industrial need for objective quality classification. For the first time chemical quality markers for Chilean Cabernet-Sauvignon were determined, and an unsupervised machine learning approach based on these markers could be proposed for objective quality classification.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Doreen Schober1*, Martin Legues1,2, Hugo Guidez3, Jose Carlos Caris Maldonado1, Sebastian Vargas1,  Alvaro Gonzalez Rojas1

1Center for Research and Innovation (CRI), Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile
2Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Región Metropolitana, Santiago, Chile
3Institut National Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Agrocampus Ouest Campus d´Angers, France

Contact the author

Keywords

Cabernet-Sauvignon, spectral clustering, quality, terroir, vineyard management

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Caractéristiques physiques et agronomiques des principaux terroirs viticoles de l’Anjou (France). Conséquences pour la viticulture

Une étude conduite dans le cœur du vignoble A.O.C. angevin, sur une surface d’environ 30.000 ha, a permis de caractériser et cartographier finement (levé au 1/12.500)

Sélection génétique des variétés originelles d’Arménie, berceau de la viticulture mondiale

Armenia, a small country in the South of the Caucasus, has been rediscovering its wine-growing past since the discovery in 2007 of archaeological wine-growing remains dating back around 8,000 years. They are among the oldest in the world. Despite a great diversity of grape varieties, Armenian winegrowers did not have sufficiently organized genetic collections to produce plants and satisfy the growing demand for planting.

Modeling island and coastal vineyards potential in the context of climate change

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives.

Generation of radicals in wine by cavitation and study of their interaction with metals, phenols and carboxylic acids

High-power ultrasounds have been related to an accelerated aging of wines, an effect that has been associated to the formation of radical species caused by the cavitation phenomenon [1]. This phenomenon consists of the formation of bubbles in the liquid medium that, when they collapse, cause high-pressure hot spots and temperatures of up to 4800 k [2], notably increasing the reactivity in the medium.

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.