Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

Abstract

Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments on Chilean Cabernet-Sauvignon, and ii) develop machine learning models to predict its quality. 

Methods and Results: 100 vineyard plots representing the typical percentage distribution of geographical and viticulture impact factors on Chilean Cabernet-Sauvignon were monitored across two seasons, 2018 and 2019. Chemical analysis of grapes and wines included the quantification of phenolic compounds by liquid chromatography and UV-vis spectral measurements, aroma compounds by gas chromatography mass spectrometry (GC/MS), and maturity parameters. Spearman correlation and Principal component analysis (PCA) identified correlations of several non-volatile and volatile compounds with quality, mainly by means of their anthocyanins, flavonols, flavan‑3‑ols, total tannins and hydroxycinnamic acids. Furthermore by trans-2-hexenol, trans-3-hexenol, hexanal, 2-isobutyl-3-methoxypyrazine (IBMP), yeast assimilable nitrogen (YAN), total soluble solids and acidity. Experimental winemaking of 600 kg per plot followed a standardized procedure, and the wines were analyzed by an expert quality rating. A sensory quality profiling for the wines was performed through a Napping Ultra Flash Profile (UFP). It revealed the distinction of three different quality levels by mainly mouthfeel attributes, and fruity and green aromas. However, neither the observed correlations of chemical analysis and sensory quality ratings, nor origin or viticulture treatment could fully explain quality. Different clustering methods, namely k-means, k-medioids and spectral clustering were evaluated in order to find categories given by the chemical analysis data itself as unsupervised machine learning. Spectral clustering led to optimum results, and independently of sample origin and viticulture traits, quality ratings were characterized to be significantly different across the clusters allowing their interpretation as quality categories. 

Conclusions: 

Chilean Cabernet-Sauvignon quality is associated with chemical quality markers known for this variety in Australia and California, including phenolic compounds, C6 alcohols and aldehydes, IBMP, maturity parameters and YAN. However, evaluation of sensory quality is fairly subjective and viticulture treatments in practical application contain interdependency, therefore it is challenging to establish supervised models involving this data. The application of unsupervised spectral clustering is proposed as an objective quality classification approach, which can be trained using supervised models for predictive purposes.

Significance and Impact of the Study: There is a high industrial need for objective quality classification. For the first time chemical quality markers for Chilean Cabernet-Sauvignon were determined, and an unsupervised machine learning approach based on these markers could be proposed for objective quality classification.

DOI:

Publication date: March 19, 2021

Issue: Terroir 2020

Type: Video

Authors

Doreen Schober1*, Martin Legues1,2, Hugo Guidez3, Jose Carlos Caris Maldonado1, Sebastian Vargas1,  Alvaro Gonzalez Rojas1

1Center for Research and Innovation (CRI), Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile
2Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Región Metropolitana, Santiago, Chile
3Institut National Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Agrocampus Ouest Campus d´Angers, France

Contact the author

Keywords

Cabernet-Sauvignon, spectral clustering, quality, terroir, vineyard management

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt

Study of varietal wines from the qualified origin denomination Rioja (Spain): analysis of wine colour, polysaccharides, polyphenols and biogenic amines and amino acides 

The cultivar with a greater oenological potential was ‘Monastel’, which showed overall better values than ‘Tempranillo’ in colour intensity, total polyphenol index, wine colour, total anthocyanins, resveratrol and gallic acid.

Chitosan from sustainable source: antimicrobial activity against undesirable yeasts for production of low-sulphite wine

The addition of sulphur dioxide (SO2) is the method traditionally used for wine stabilisation, due to its broad spectrum of action against unwanted microorganisms and its ability to prevent oxidative phenomena.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.