Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

Abstract

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the rights of users. However, in recent times, trust has been eroded by the move by the European Union to legislate away the use of the grape variety ‘Prosecco’ and create an artificial region called ‘Prosecco’. This effectively downgraded the value of the GI Conegliano Valdobbiadene Prosecco by removing the legitimate terroir link between the region and the product. In Australia and other countries, this was perceived as a cynical attempt to remove the rights of other producers to use the traditional variety Prosecco and has been strongly resisted. In this paper, we use the case study of ‘Prosecco’ to explore the importance of GIs and how the national political agendas can impact on the validity of the concept. Recent developments in international law and practical experience in recent Free Trade Agreement negotiations allow the authors to develop a hypothesis that GIs are being used as a bargaining chip in trade negotiations. Their very credibility is being eroded as protectionist ideology is driving short-sighted political decision making to devalue the whole concept of GIs by de-linking terroir from the GI. This limits the acceptability of the GI concept and potentially will lead to a consumer backlash as the integrity of the system is questioned. This study also investigates the international legal developments and the implications for these on GI protection.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Anthony Battaglene1*, Damien Griffante2, Lee McLean1

1Australian Grape and Wine Incorporated, Canberra, ACT, Australia
2Australian Grape and Wine Incorporated, Adelaide, South Australia, Australia

Contact the author

Keywords

Geographic Indications, grape varieties, regionality, Prosecco, wine trade

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Discriminant value of soil properties for terroir zoning

Environmental analysis (climate, vegetation, geomorfoloy-lanscape, lithology and soil) and its integration in a quality index taking the Appellation of Origin as the sole universe are used as general methodology for terroir zoning in Spain (Sotés and Gómez-Miguel, 1986-2005). This methodology is also applied to specific aspects of different Spanish Appellations of Origin (size, distribution and landscape peculiarities and vine occupation index).

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest.

Enhancing viticulture sustainability with biochar: results of field experiments in Italy

The increasing vulnerability of viticulture to climate change necessitates innovative solutions to improve its sustainability and resilience.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.