The performance of grapevines on identified terroirs in Stellenbosch, South Africa


A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product. Preliminary terroirs were defined for Stellenbosch for Sauvignon blanc and Cabernet Sauvignon using decision trees built on analyses of viticultural, oenological and environmental data measured on a network of plots over 7 seasons. This study was considered to be a preliminary approach to determine the validity of terroir studies for the South African wine industry.
It was expected that measurement of viticultural and oenological variables would serve to validate or refine the decision trees constructed with the first set of data and that the measurement of ecophysiological parameters on a separate network of reference plots would facilitate improved understanding of the grapevine x terroir interaction. Three plots of 10 vines each were therefore identified in selected commercial vineyards of Cabernet Sauvignon and Sauvignon blanc using remote sensing as a tool to identify homogenous plots where possible. These vineyards were representative of dominant terroir units that were identified for each cultivar. This network of experimental plots was monitored with respect to their ecophysiological response to the growing environment. This included dynamics of canopy development, vegetative growth, dynamics of berry growth and composition and wine character. Pre-dawn leaf water potential was determined at different stages during the growth season. The growing environment was characterised with respect to soil and climate by means of direct observations and measurements and interpolated values from the agroclimatic weather station network.
This paper will examine the results from three seasons for selected Sauvignon blanc and Cabernet Sauvignon vineyards from this network and compare these results to previous findings.


Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article


Victoria A CAREY (1), Valérie BONNARDOT (2), Zelmari COETZEE (3) & Laure DU COS DE ST BARTHELEMY (4)

(1) Lecturer and 3 Technical assistant, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
(2) Agroclimatological consultant, Bureau d’Études et de Recherches en Climatologie Appliquée à la Viticulture
(4) Masters student, SupAgro Montpellier and affiliated student, Stellenbosch University

Contact the author


Sauvignon blanc, Cabernet Sauvignon, soil, ecophysiology, Stellenbosch


IVES Conference Series | Terroir 2008


Related articles…

Recherche de relations entre terroir et caractéristiques sensorielles des eaux-de-vie de Cognac

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Preliminary evaluation of agronomic and enological properties of preselected grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Cultivation of a few number of clones is causing the loss of vineyard biodiversity, resulting in the disappearance of biotypes that could be of interest to face future challenges,

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

« Wine routes »: a collective brand to build a wine reputation on the basis of terroir and landscapes

Le marché international du vin est désormais tourné vers la qualité et les vignobles de vin de masse se transforment pour construire la qualité et la réputation de leurs produits. Cette construction s’appuie notamment sur la valorisation de ressources territoriales de nature physique (terroir, pacage, écosystème) et humaine (savoir-faire, culture, patrimoine…). Les « Routes des Vins » sont des exemples concrets de ces processus de «territorialisation», combinant ces ressources territoriales pour communiquer sur l’ancrage géographique et la spécificité des vins. Les «Routes des Vins» émergentes, observées dans les régions vitivinicoles en transition vers la qualité, en Languedoc Roussillon, à Mendoza (Argentine) et au Western Cape (Afrique du Sud), participent souvent à la valorisation des terroirs, en organisant un itinéraire sur le territoire associé, en faisant découvrir les vins «de qualité», les paysages, les pratiques et le savoir-faire associés à leur élaboration.