Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Unexpected relationships between δ13C, water deficit, and wine grape performance

Unexpected relationships between δ13C, water deficit, and wine grape performance

Abstract

Water nutrition is crucial for wine grape performance. Thus soil investigation aims at characterizing spatial and temporal variability of available water. A possible strategy is to integrate monitoring and proxies of water availability. The carbon isotope ratio δ13C, measured in the alcohol of wine, is a promising tool to determine water stress during the vine growing season and vine performance. A research study was set up to evaluate the relationships between δ13C, soil water deficit, and wine grape viticultural and oenological performance. The trial was carried out for three years in the Chianti Classico wine production district (Central Italy), on not irrigated vineyards of a premium farm. The reference variety was Sangiovese. Eleven sites were chosen for vine monitoring and grape sampling. The performance parameters were alcohol and sugar content, sugar accumulation rate, mean berry weight, and extractable polyphenols. δ13C, stem water potential, and soil water deficit, as difference between soil water content, monitored during the veraison-harvest, and the standard wilting point, were measured. δ13C resulted directly related to stem water potential and soil water deficit, and showed absence to only moderate water stress. However, the relationship with viticultural and oenological results was contrary to the expectation, that is, the performance increased when the water stress decreased. The explanation was that the viticultural husbandry was so competing for the plants (high plant density, high pruning, weak rootstock, grass cover) that the effects of water stress on grape quality were magnified. In conclusion, δ13C cannot be directly used to estimate vine performance.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Edoardo A.C. COSTANTINI (1), Alessandro AGNELLI (1), Pierluigi BUCELLI (1), Aldo CIAMBOTTI (2), Valentina DELL’ORO (2), Laura NATARELLI (1), Sergio PELLEGRINI (1), Rita PERRIA (3), Simone PRIORI (1), Paolo STORCHI (3), Christos TSOLAKIS (2), Nadia VIGNOZZI (1)

(1) CRA-ABP, Research Centre for Agrobiology and Pedology, Florence, Italy
(2) CRA-ENO Research Centre for Oenology, Asti, Italy; 3CRA-VIC Research Unit for Viticulture, Arezzo, Italy

Contact the author

Keywords

Carbon, water availability, proxy, red grape, Tuscany

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

First company results and for the territory on the application of the “bio-Métaéthique 4.1c” in italy. Cultural, socio-economic, technical and productive aspects

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Stable or dynamic? How phenotypic plasticity could be key to select for grapevine adaptation?

Climate change will require the adaptation of agricultural systems and among the different means of adaptation, changing plant material is a promising strategy. In viticulture, different levels of diversity are currently exploited: clonal and varietal diversity for rootstocks and scions. A huge quantity of research aims to evaluate different genotypes in different environmental conditions to identify which ones are the best adapted and the most tolerant to future environmental conditions.

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.

Study of cross-modal interactions through sensory and chemical characteristics of italian red wines

This work aimed at investigating red wine olfactory–oral cross-modal interactions, and at testing their impact on the correlations between sensory and chemical variables. Seventy-four Italian red whole wines (WWs) from 10 varieties, and corresponding deodorized wines (DWs), were evaluated by sensory descriptive assessment.

Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

The quality of grapevines measured by yield and must density in the northern part of Europe -conditions can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another, i.e. différences in must densities can range from 30 to 50 °Oe. An explanation may be changes of weather conditions during critical developmental stages of the grapevines (2, 3, 5). These can be categorized as “macro climatic” influences.