Terroir 2020 banner
IVES 9 IVES Conference Series 9 Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Abstract

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India, Thailand, Myanmar and Venezuela. In the 1980’s, Brazil started to produce tropical wines in the São Francisco Valley, where vines are pruned twice per year and grapes are harvested twice a year, due to the natural conditions – high annual average temperature, solar radiation, water availability for irrigation, and vineyard management, using phytoregulators. According to the plot scheduling, wineries can prune and harvest every day throughout the year. In this study, a Research, Development and Innovation (RD&I) project was developed between 2013 and 2018. The objective was to produce a dossier that describes the climate and soil conditions, landscape, topography, agronomical and viticultural parameters, as well as the enological protocols used by all wineries, in Vale do São Francisco, a region producing tropical wines. The dossier will be submitted in 2020 by Vinhovasf, an Association of the wineries, to recognize Vale do São Francisco as a Geographical indication (GI) for tropical wines. This GI will include white, red, and also sparkling wines made from traditional varieties of Vitis vinifera L. to the region.

Methods and Results: The geographical area delimited by the GI, includes eight cities presenting similar climate conditions (33,000 km2 of total area). A characterization of the soils in the GI area, as well as the trellis systems of the vineyards, the rootstocks and varieties adapted and authorized, and the enological protocols adopted for winemaking was made. Grape composition and the physicochemical and sensorial parameters of the wines were also characterized.

Conclusions:

A dossier has been developed with all the information needed to submit a request for Vale do São Francisco, located in northeastern Brazil to become a GI for still and sparkling tropical wines.

Significance and Impact of the Study: It will be the first GI for tropical wines in the world, using a similar structural model adopted by the European Union. It is expected that this will bring benefits to the wineries, as well as for all producers in general and for the working population involved in the grape and wine production chain in the region. The GI will improve the wine quality, recognition, reputation, valuation and promotion of all products, as it was observed for all GI obtained in the south of Brazil since 2002. Hence, the regional wine sector will improve its competitiveness, enotourism and attraction of new investments in the region.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Giuliano Elias Pereira1*, Jorge Tonietto1, Ivanira Falcade2, Carlos Alberto Flores3, Iêdo Bezerra Sá4, Tony Jarbas Ferreira Cunha4, Tatiana Ayako Taura4, Rosemary Hoff1, Mateus Rosas Ribeiro Filho5, Luciana Leite de Andrade Lima5, Celito Crivellaro Guerra1, Mauro Celso Zanus1, José Fernando da Silva Protas1, Magna Soelma Beserra de Moura4, João Ricardo Ferreira de Lima4, Francisco Macedo de Amorim6, Marcos dos Santos Lima6, Ricardo Henriques7, José Gualberto de Freitas Almeida8

1Embrapa Grape & Wine, Zip Code 95.701-008, Bento Gonçalves-RS, Brazil
2Universidade de Caxias do Sul-UCS, Zip Code 95.070-560, Caxias do Sul-RS, Brazil
3Embrapa Temperate Agriculture, Zip Code 96.010-971, Pelotas-RS, Brazil
4Embrapa Semi-Arid Region, Zip Code 56.302-970, Petrolina-PE, Brazil
5Universidade Federal Rural de Pernambuco-UFRPE, Zip Code 52.171-900, Recife-PE, Brazil
6Instituto Federal do Sertão Pernambucano, Zip Code 56.300-000, Petrolina-PE, Brazil
7Vitivinícola Santa Maria/Global Wines, Zip Code 56.395-000, Lagoa Grande-PE, Brazil
8Vinícola do Vale do São Francisco/Vinhovasf, Zip Code 56.380-000, Santa Maria da Boa Vista-PE, Brazil

Contact the author

Keywords

Vitis vinifera L, grape, wine, quality, typicality

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Assessment of alternative sweetening methods for dealcoholized wine

In recent years, there has been an increase in demand for non-alcoholic wine with an ethanol content of less than 0.5% v/v. The dealcoholization process can take place by various methods, such as vacuum distillation or membrane technologies like osmotic distillation. Compared to distillation, membrane systems often require multiple passes or a combination of multiple separation methods. Complete or almost complete removal of ethanol significantly changes the sensory characteristics of wine.

The estimation of the clear-sky effective PAR resources in a mountain area

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

The study of cultural practices to delay ripening and the characterization of their effect on wine composition is important in the mitigation of accelerated ripening caused by higher temperatures

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.