Terroir 2020 banner
IVES 9 IVES Conference Series 9 Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Abstract

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India, Thailand, Myanmar and Venezuela. In the 1980’s, Brazil started to produce tropical wines in the São Francisco Valley, where vines are pruned twice per year and grapes are harvested twice a year, due to the natural conditions – high annual average temperature, solar radiation, water availability for irrigation, and vineyard management, using phytoregulators. According to the plot scheduling, wineries can prune and harvest every day throughout the year. In this study, a Research, Development and Innovation (RD&I) project was developed between 2013 and 2018. The objective was to produce a dossier that describes the climate and soil conditions, landscape, topography, agronomical and viticultural parameters, as well as the enological protocols used by all wineries, in Vale do São Francisco, a region producing tropical wines. The dossier will be submitted in 2020 by Vinhovasf, an Association of the wineries, to recognize Vale do São Francisco as a Geographical indication (GI) for tropical wines. This GI will include white, red, and also sparkling wines made from traditional varieties of Vitis vinifera L. to the region.

Methods and Results: The geographical area delimited by the GI, includes eight cities presenting similar climate conditions (33,000 km2 of total area). A characterization of the soils in the GI area, as well as the trellis systems of the vineyards, the rootstocks and varieties adapted and authorized, and the enological protocols adopted for winemaking was made. Grape composition and the physicochemical and sensorial parameters of the wines were also characterized.

Conclusions:

A dossier has been developed with all the information needed to submit a request for Vale do São Francisco, located in northeastern Brazil to become a GI for still and sparkling tropical wines.

Significance and Impact of the Study: It will be the first GI for tropical wines in the world, using a similar structural model adopted by the European Union. It is expected that this will bring benefits to the wineries, as well as for all producers in general and for the working population involved in the grape and wine production chain in the region. The GI will improve the wine quality, recognition, reputation, valuation and promotion of all products, as it was observed for all GI obtained in the south of Brazil since 2002. Hence, the regional wine sector will improve its competitiveness, enotourism and attraction of new investments in the region.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Giuliano Elias Pereira1*, Jorge Tonietto1, Ivanira Falcade2, Carlos Alberto Flores3, Iêdo Bezerra Sá4, Tony Jarbas Ferreira Cunha4, Tatiana Ayako Taura4, Rosemary Hoff1, Mateus Rosas Ribeiro Filho5, Luciana Leite de Andrade Lima5, Celito Crivellaro Guerra1, Mauro Celso Zanus1, José Fernando da Silva Protas1, Magna Soelma Beserra de Moura4, João Ricardo Ferreira de Lima4, Francisco Macedo de Amorim6, Marcos dos Santos Lima6, Ricardo Henriques7, José Gualberto de Freitas Almeida8

1Embrapa Grape & Wine, Zip Code 95.701-008, Bento Gonçalves-RS, Brazil
2Universidade de Caxias do Sul-UCS, Zip Code 95.070-560, Caxias do Sul-RS, Brazil
3Embrapa Temperate Agriculture, Zip Code 96.010-971, Pelotas-RS, Brazil
4Embrapa Semi-Arid Region, Zip Code 56.302-970, Petrolina-PE, Brazil
5Universidade Federal Rural de Pernambuco-UFRPE, Zip Code 52.171-900, Recife-PE, Brazil
6Instituto Federal do Sertão Pernambucano, Zip Code 56.300-000, Petrolina-PE, Brazil
7Vitivinícola Santa Maria/Global Wines, Zip Code 56.395-000, Lagoa Grande-PE, Brazil
8Vinícola do Vale do São Francisco/Vinhovasf, Zip Code 56.380-000, Santa Maria da Boa Vista-PE, Brazil

Contact the author

Keywords

Vitis vinifera L, grape, wine, quality, typicality

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Influence du terroir sur la composition en flavonoïdes de la baie de raisin de Cabernet franc en Moyenne Vallée de la Loire

The terroir offers great variability in the typicity of the wines produced. Following tastings integrating several vintages, the multiple factor analysis of the sensory data revealed a group of taste criteria contributing to the notion of “Power”, referenced “Power and Harmony”, which makes it possible to differentiate wines from various terroirs of the Middle Loire Valley (Pages et al ., 1987).

Plant nitrogen assimilation and partitioning as a function of crop load

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.