Terroir 2020 banner
IVES 9 IVES Conference Series 9 Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Abstract

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India, Thailand, Myanmar and Venezuela. In the 1980’s, Brazil started to produce tropical wines in the São Francisco Valley, where vines are pruned twice per year and grapes are harvested twice a year, due to the natural conditions – high annual average temperature, solar radiation, water availability for irrigation, and vineyard management, using phytoregulators. According to the plot scheduling, wineries can prune and harvest every day throughout the year. In this study, a Research, Development and Innovation (RD&I) project was developed between 2013 and 2018. The objective was to produce a dossier that describes the climate and soil conditions, landscape, topography, agronomical and viticultural parameters, as well as the enological protocols used by all wineries, in Vale do São Francisco, a region producing tropical wines. The dossier will be submitted in 2020 by Vinhovasf, an Association of the wineries, to recognize Vale do São Francisco as a Geographical indication (GI) for tropical wines. This GI will include white, red, and also sparkling wines made from traditional varieties of Vitis vinifera L. to the region.

Methods and Results: The geographical area delimited by the GI, includes eight cities presenting similar climate conditions (33,000 km2 of total area). A characterization of the soils in the GI area, as well as the trellis systems of the vineyards, the rootstocks and varieties adapted and authorized, and the enological protocols adopted for winemaking was made. Grape composition and the physicochemical and sensorial parameters of the wines were also characterized.

Conclusions:

A dossier has been developed with all the information needed to submit a request for Vale do São Francisco, located in northeastern Brazil to become a GI for still and sparkling tropical wines.

Significance and Impact of the Study: It will be the first GI for tropical wines in the world, using a similar structural model adopted by the European Union. It is expected that this will bring benefits to the wineries, as well as for all producers in general and for the working population involved in the grape and wine production chain in the region. The GI will improve the wine quality, recognition, reputation, valuation and promotion of all products, as it was observed for all GI obtained in the south of Brazil since 2002. Hence, the regional wine sector will improve its competitiveness, enotourism and attraction of new investments in the region.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Giuliano Elias Pereira1*, Jorge Tonietto1, Ivanira Falcade2, Carlos Alberto Flores3, Iêdo Bezerra Sá4, Tony Jarbas Ferreira Cunha4, Tatiana Ayako Taura4, Rosemary Hoff1, Mateus Rosas Ribeiro Filho5, Luciana Leite de Andrade Lima5, Celito Crivellaro Guerra1, Mauro Celso Zanus1, José Fernando da Silva Protas1, Magna Soelma Beserra de Moura4, João Ricardo Ferreira de Lima4, Francisco Macedo de Amorim6, Marcos dos Santos Lima6, Ricardo Henriques7, José Gualberto de Freitas Almeida8

1Embrapa Grape & Wine, Zip Code 95.701-008, Bento Gonçalves-RS, Brazil
2Universidade de Caxias do Sul-UCS, Zip Code 95.070-560, Caxias do Sul-RS, Brazil
3Embrapa Temperate Agriculture, Zip Code 96.010-971, Pelotas-RS, Brazil
4Embrapa Semi-Arid Region, Zip Code 56.302-970, Petrolina-PE, Brazil
5Universidade Federal Rural de Pernambuco-UFRPE, Zip Code 52.171-900, Recife-PE, Brazil
6Instituto Federal do Sertão Pernambucano, Zip Code 56.300-000, Petrolina-PE, Brazil
7Vitivinícola Santa Maria/Global Wines, Zip Code 56.395-000, Lagoa Grande-PE, Brazil
8Vinícola do Vale do São Francisco/Vinhovasf, Zip Code 56.380-000, Santa Maria da Boa Vista-PE, Brazil

Contact the author

Keywords

Vitis vinifera L, grape, wine, quality, typicality

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Geospatial technologies in spatially defined viticulture: case study of a vineyard with Agiorgitiko variety in Koutsi, Nemea, Greece

Geospatial technologies have significant contribution to viticulture, especially in small-scale vineyards, which require precise management. Geospatial data collected by modern technologies, such as Unmanned Aerial Vehicle (UAV) and satellite imagery, can be processed by modern software and easily be stored and transferred to GIS environments, highlighting important information about the health of vine plants, the yield of grapes and the wine, especially in wine-making varieties. The identification of field variability is very important, particularly for the production of high quality wine. Modern geospatial data management technologies are used to achieve an easy and effortless localization of the fields’ variability.

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.

Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

The notion of terroir covers multiple components, from geology, pedology, geomorphology and climatology (Doledec, 1995), to aspects that are less well identified but which also intervene in the “typicality” of wines. This justifies the “zoning” approach (Moncomble and Panigaï, 1990) to define homogeneous areas, under the same agro-viticultural management and also identified at the product level (Morlat and Asselin, 1992).

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.