Terroir 2020 banner
IVES 9 IVES Conference Series 9 Selecting varieties best adapted to current and future climate conditions based on ripening traits

Selecting varieties best adapted to current and future climate conditions based on ripening traits

Abstract

Aim: The aim of this study was to quantify key berry sugar accumulation traits and characterize their plasticity in response to climate variation from data collected from different cultivars over seven years from an experimental vineyard.

Methods and Results: Berry samples were collected weekly from different Vitis Vinifera (L.) cultivars at four replicate locations within a common-garden randomized complete block design from 2012-2018 in Bordeaux, France. A logistic model was parameterized to the sugar accumulation data and ripening traits were extracted. The variation in sugar accumulation traits were well explained by cultivar, year, and their interaction, highlighting the relative roles of genetic variation and phenotypic plasticity. Sugar accumulation traits themselves were affected by antecedent and concurrent climate factors such as temperature, photosynthetically active radiation, and vine water status, whether before, or after mid-véraison. In addition, other traits such as berry weight at mid-véraison, and date of mid-véraison had an important influence on sugar accumulation traits. Further, the relative importance of these factors varied significantly by cultivar. More research is needed to unravel the exact mechanisms underlying the differential genotypic responses of traits to these factors.

Conclusions: 

The variations in sugar accumulation traits were well explained by cultivar, year, and their interaction, highlighting the relative roles of genetic variation, climate factors, and phenotypic plasticity. Sugar accumulation traits were found to be affected by antecedent and concurrent climate factors both before and after mid-véraison. The relative importance of these factors varied significantly by cultivar. In this study we focused only on sugar accumulation traits. Sugar is, however, only one of many determinants for grape cultivar suitability in wine regions. Other traits include, but are not limited to, water use efficiency, photosynthetic capacity, yield, and berry composition. 

Significance and Impact of the Study: Climate change induces excessively high sugar levels in grapes, resulting in wines with increased alcohol content. It also results in earlier ripening, moving the ripening period to a part of the season where climatic conditions are not optimum for producing high quality wines. Variability among cultivars is a precious resource to adapt viticulture when environments change. This study highlighted the relative roles of genetic variation and phenotypic plasticity to environmental conditions in the variation of sugar accumulation traits. Moreover, it shows that a multi-trait approach is required to study wine grape ripening to select varieties in a context of global change.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Bruno Suter1, Agnès Destrac-Irvine1, Mark Gowdy1, Zhanwu Dai2, Cornelis van Leeuwen1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China

Contact the author

Keywords

Grapevine cultivar, berry sugar accumulation, climate change, phenotypic plasticity, modelling

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Monitoring of microbial biomass to characterise vineyard soils

Le sol est un facteur important permettant la croissance de la vigne. Les propriétés physiques et chimiques, mais aussi microbiologiques ont une influence sur beaucoup des fonctions du sol comme la structure, le drainage, la fertilité, déterminant la vigueur des plantes et le potentiel œnologique des raisins.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Is the consumer ready for innovative fruit wines?

AIM: Wine consumption in the last fifteen years showed a decrease in Europe [1]. New alternatives of wines appeared on the market. Those beverages are obtained by blending wines and fruit juices or flavoring wines with artificial or natural aromas and have medium alcohol content (from 8 to 10.5%) [2]. Recently, an innovative fruit wine has been proposed obtained by co-fermenting grape must and kiwi juice [3] whose potential attractiveness to consumers should be exploited. However, differences in product acceptability and perception, as well as the individuals’ willingness to consume and pay could change in function of subjects socio-demographic characteristics. The target group selected is represented by young adults (18-35 years old) consumption groups.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.