Terroir 2020 banner
IVES 9 IVES Conference Series 9 Selecting varieties best adapted to current and future climate conditions based on ripening traits

Selecting varieties best adapted to current and future climate conditions based on ripening traits

Abstract

Aim: The aim of this study was to quantify key berry sugar accumulation traits and characterize their plasticity in response to climate variation from data collected from different cultivars over seven years from an experimental vineyard.

Methods and Results: Berry samples were collected weekly from different Vitis Vinifera (L.) cultivars at four replicate locations within a common-garden randomized complete block design from 2012-2018 in Bordeaux, France. A logistic model was parameterized to the sugar accumulation data and ripening traits were extracted. The variation in sugar accumulation traits were well explained by cultivar, year, and their interaction, highlighting the relative roles of genetic variation and phenotypic plasticity. Sugar accumulation traits themselves were affected by antecedent and concurrent climate factors such as temperature, photosynthetically active radiation, and vine water status, whether before, or after mid-véraison. In addition, other traits such as berry weight at mid-véraison, and date of mid-véraison had an important influence on sugar accumulation traits. Further, the relative importance of these factors varied significantly by cultivar. More research is needed to unravel the exact mechanisms underlying the differential genotypic responses of traits to these factors.

Conclusions: 

The variations in sugar accumulation traits were well explained by cultivar, year, and their interaction, highlighting the relative roles of genetic variation, climate factors, and phenotypic plasticity. Sugar accumulation traits were found to be affected by antecedent and concurrent climate factors both before and after mid-véraison. The relative importance of these factors varied significantly by cultivar. In this study we focused only on sugar accumulation traits. Sugar is, however, only one of many determinants for grape cultivar suitability in wine regions. Other traits include, but are not limited to, water use efficiency, photosynthetic capacity, yield, and berry composition. 

Significance and Impact of the Study: Climate change induces excessively high sugar levels in grapes, resulting in wines with increased alcohol content. It also results in earlier ripening, moving the ripening period to a part of the season where climatic conditions are not optimum for producing high quality wines. Variability among cultivars is a precious resource to adapt viticulture when environments change. This study highlighted the relative roles of genetic variation and phenotypic plasticity to environmental conditions in the variation of sugar accumulation traits. Moreover, it shows that a multi-trait approach is required to study wine grape ripening to select varieties in a context of global change.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Bruno Suter1, Agnès Destrac-Irvine1, Mark Gowdy1, Zhanwu Dai2, Cornelis van Leeuwen1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China

Contact the author

Keywords

Grapevine cultivar, berry sugar accumulation, climate change, phenotypic plasticity, modelling

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Smoke tainted wine – what now?

The frequency of bushfires close to wine regions around the world has increased in the last two decades. The economic losses incurred when grapes and wines are discarded due to ‘smoke taint’ are substantial (i.e., hundreds of millions of dollars). Efforts to mitigate and ameliorate smoke taint are therefore crucial. Chardonnay, rosé and cabernet sauvignon wines made from grapes exposed to smoke during the 2020 wildfires in eastern Australia were subjected to various amelioration techniques: the addition of activated carbons, molecularly imprinted polymers (mips), and a proprietary resin (either directly, or following membrane filtration); spinning cone column (scc) distillation; and finally, transformation into vinegar.

Use of fumaric acid on must or during alcoholic fermentation

Fumaric acid has been approved by the OIV in 2021 for its application on wine to control the growth and activity of lactic acid bacteria. Fumaric acid is currently being evaluated by the OIV as an acidifier of must and wine. Investigations during the 2023 vintage provided further information on its use on must or during AF, thus completing information provided during the previous vintage.

The use of unripe frozen musts for modulating wine characteristics throughout acidity correction – effects on volatile and amino acid composition

As environmental issues come more to the fore, vineyards residues are being looked at as solutions rather than problems. Aiming to develop a sustainable methodology for musts acidity correction in the process of winemaking, much needed in warm regions, the present study was performed according to Circular Economy values.

Sviluppo di una metodologia di tracciabilità e definizione dell’impronta petrochimica in suoli e vini della Sicilia occidentale nella piana di Marsala (TP)

I risultati delle ricerche condotte in un vigneto sperimentale di Marsala (TP), scelto per omogeneità di fattori bio-agronomici (età, tecniche colturali, potenzialità vegetativa e produttiva)

Quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR in the study of deuterium distribution in intracellular water and fermentation products of grape carbohydrates using ethyl alcohol as an example

The paper presents results that develop the results of studies carried out in 2022-2023 under the OIV grant on the topic of distribution of deuterium (2H(D)) in the intracellular water of grapes and wines, taking into account the impact of natural, climatic and technogenic factors using quantitative nuclear magnetic resonance spectroscopy (qNMR).