Terroir 2020 banner
IVES 9 IVES Conference Series 9 Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Abstract

Aim: Among Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevines, Neofusicoccum parvum is one of the most virulent and fastest wood-colonizing fungi. This study aimed to evaluate the susceptibility of six red grapevine cultivars (“Bobal”, “Monastrell”, “Garnacha Tinta”, “Moravia Agria”, “Tinto Velasco” and “Moribel” to N. parvum, under field conditions.

Methods and Results: Pathogenicity studies were conducted, over two consecutive years, with one-year old grapevine rooted cuttings inoculated with a N. parvum isolate. Rooted cuttings were wounded between the two upper internodes with a cork borer. A mycelial agar plug, from a 3-weeks-old culture on potato dextrose agar (PDA), was placed in the wound. Wounds were sealed with parafilm and wrapped with foil paper to prevent drying. Ten rooted cuttings per cultivar were inoculated with the fungus and two others with uncolonized PDA plugs, as negative controls. After inoculating, rooted cuttings were planted in a plot and irrigated by a drip system with two drippers per plant. Plants were collected after eight months and inspected for lesion development. Extent of wood necrosis was measured upward and downward from the inoculation point. Three rooted cuttings for each cultivar were selected and small pieces, of necrotic tissue from de edge of each lesion, were cut and placed on malt extract agar supplemented with 0.5 g/L of streptomycin sulphate (MEAS), in an attempt to recover the inoculated fungus and complete Koch’s postulates. N. parvum was identified by morphological and molecular approaches. Mean percentage of infected rooted cuttings ranged from 42.1% (“Monastrell” cultivar) to 93.3% (“Tinto Velasco” cultivar). Mean lengths of the extent of wood necrosis caused by N. parvum on inoculated one-year-old grapevine wood ranged from 21.2 (“Bobal” cultivar) to 87.2 mm (“Tinto Velasco” cultivar). N. parvum was reisolated from the edge of each lesion in 90.3% of the cultivars. The results of statistical analysis showed that “Bobal” and “Monastrell” cultivars were significantly more tolerant than “Tinto Velasco”.  

Conclusions:

All tested grapevine cultivars were susceptible to infection by N. parvum, evidencing that there was no qualitative resistance to this fungus. “Bobal” and “Monastrell” cultivars highlighted for their lower wood response susceptibility to N. parvum.

Significance and Impact of the Study: Interactions between Botryosphaeriaceae species and grapevine cultivars are poorly understood and there is currently little data available. This study allowed classifying different Vitis vinifera cultivars based on their degree of quantitative resistance to N. parvum. “Bobal” and “Monastrell” cultivars could be potential candidates to create tolerant varieties to N. parvum fungus. Using tolerant varieties would be the safest, easiest, the least expensive and the most effective means of controlling this disease.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Juan Luis Chacón1*, David Gramaje2, Adela Mena1, Pedro Miguel Izquierdo1, Jesús Martínez1

1Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Ctra. Toledo-Albacete s/n, 13700 Tomelloso, Spain
2Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas – Universidad de la Rioja – Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain

Contact the author

Keywords

Botryosphaeria dieback, grapevine, grapevine trunk diseases, Neofusicoccum parvum

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard. Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data.

Ripening of Vitis vinifera grapes varieties in São Joaquim, a new wine growing region, Southern Brazil

This report has investigated the ripening characteristics of Vitis vinifera grapes Cabernet Franc, Merlot, Sangiovese and Syrah in two consecutive vintages (2006 and 2007), in order to evaluate the adaptation from these recently varieties planted in São Joaquim town, Santa Catarina State, Brazil.

Rationalizing The Wine Nucleophilic Competition For Quinone Addition

loss and color browning which lead to wine unacceptance by consumers. These changes are mainly driven by the consumption of oxygen by polyphenols leading to the production of quinones which are oxidant compounds. Quinones can react with numerous nucleophilic compounds notably aromatic thiols, decreasing the aromatic bouquet of the wine.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

Genetic and hormonal regulation of grape berry cuticle formation

The plant surface typically comprises of various epidermal cell types which synthesise and deposit a protective waxy layer known as the cuticle. The cuticle is a significant contributor to important crop traits related to drought tolerance, biotic stress, postharvest fruit quality as well as providing structural support. In this work we have investigated grape berry cuticle formation in the context of the accumulation of anti-fungal specialised metabolites and the ability of the cuticle to structurally cope with the rapid expansion of ripening berries. Metabolic QTL analysis was performed in a grapevine cross population, using chemical profiling data collected via GC-MS analysis for cuticular waxes.