Terroir 2020 banner
IVES 9 IVES Conference Series 9 Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Abstract

Aim: Among Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevines, Neofusicoccum parvum is one of the most virulent and fastest wood-colonizing fungi. This study aimed to evaluate the susceptibility of six red grapevine cultivars (“Bobal”, “Monastrell”, “Garnacha Tinta”, “Moravia Agria”, “Tinto Velasco” and “Moribel” to N. parvum, under field conditions.

Methods and Results: Pathogenicity studies were conducted, over two consecutive years, with one-year old grapevine rooted cuttings inoculated with a N. parvum isolate. Rooted cuttings were wounded between the two upper internodes with a cork borer. A mycelial agar plug, from a 3-weeks-old culture on potato dextrose agar (PDA), was placed in the wound. Wounds were sealed with parafilm and wrapped with foil paper to prevent drying. Ten rooted cuttings per cultivar were inoculated with the fungus and two others with uncolonized PDA plugs, as negative controls. After inoculating, rooted cuttings were planted in a plot and irrigated by a drip system with two drippers per plant. Plants were collected after eight months and inspected for lesion development. Extent of wood necrosis was measured upward and downward from the inoculation point. Three rooted cuttings for each cultivar were selected and small pieces, of necrotic tissue from de edge of each lesion, were cut and placed on malt extract agar supplemented with 0.5 g/L of streptomycin sulphate (MEAS), in an attempt to recover the inoculated fungus and complete Koch’s postulates. N. parvum was identified by morphological and molecular approaches. Mean percentage of infected rooted cuttings ranged from 42.1% (“Monastrell” cultivar) to 93.3% (“Tinto Velasco” cultivar). Mean lengths of the extent of wood necrosis caused by N. parvum on inoculated one-year-old grapevine wood ranged from 21.2 (“Bobal” cultivar) to 87.2 mm (“Tinto Velasco” cultivar). N. parvum was reisolated from the edge of each lesion in 90.3% of the cultivars. The results of statistical analysis showed that “Bobal” and “Monastrell” cultivars were significantly more tolerant than “Tinto Velasco”.  

Conclusions:

All tested grapevine cultivars were susceptible to infection by N. parvum, evidencing that there was no qualitative resistance to this fungus. “Bobal” and “Monastrell” cultivars highlighted for their lower wood response susceptibility to N. parvum.

Significance and Impact of the Study: Interactions between Botryosphaeriaceae species and grapevine cultivars are poorly understood and there is currently little data available. This study allowed classifying different Vitis vinifera cultivars based on their degree of quantitative resistance to N. parvum. “Bobal” and “Monastrell” cultivars could be potential candidates to create tolerant varieties to N. parvum fungus. Using tolerant varieties would be the safest, easiest, the least expensive and the most effective means of controlling this disease.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Juan Luis Chacón1*, David Gramaje2, Adela Mena1, Pedro Miguel Izquierdo1, Jesús Martínez1

1Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Ctra. Toledo-Albacete s/n, 13700 Tomelloso, Spain
2Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas – Universidad de la Rioja – Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain

Contact the author

Keywords

Botryosphaeria dieback, grapevine, grapevine trunk diseases, Neofusicoccum parvum

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Red wine astringency and the influence of wine–saliva aggregates on oral lubrication

Oral tribology receives growing attention in the field of food sciences as it offers great opportunities to establish correlations between physical parameters, such as the coefficient of friction, and sensory perceptions in the human mouth.

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

Physiological means to curb the enthusiasm of viruses from infecting grapevines  

The two most deadly viruses infecting and threatening the productivity of grapevines worldwide are leafroll and red blotch viruses. There is no cure for viral diseases other than roguing the symptomatic vines and replacing them with certified vines derived from clean, virus-tested stocks.
Given that phloem plays a central role in virus infection, this study aimed to purge the virus by girdling the phloem of leafroll-infected vines at different phenological stages of infected grapevines. Phloem-girdling was performed on canes at veraison to varying regions between the proximal and distal clusters.

Reconnaissance des vins de terroir par les consommateurs

Approaching the notion of terroir wines at the level of consumption poses a problem due to the absence of a regulatory definition of the term terroir, which is not taken up either at Community level or at national level (the Consumer Code in particular does not define not the land). However, whatever definition is adopted for the terroir, we can retain at the consumer level an identification of the terroir through the different geographical mentions appearing on the labels or on the shelves of the wine shelf.