Terroir 2020 banner
IVES 9 IVES Conference Series 9 Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Abstract

Aim: Among Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevines, Neofusicoccum parvum is one of the most virulent and fastest wood-colonizing fungi. This study aimed to evaluate the susceptibility of six red grapevine cultivars (“Bobal”, “Monastrell”, “Garnacha Tinta”, “Moravia Agria”, “Tinto Velasco” and “Moribel” to N. parvum, under field conditions.

Methods and Results: Pathogenicity studies were conducted, over two consecutive years, with one-year old grapevine rooted cuttings inoculated with a N. parvum isolate. Rooted cuttings were wounded between the two upper internodes with a cork borer. A mycelial agar plug, from a 3-weeks-old culture on potato dextrose agar (PDA), was placed in the wound. Wounds were sealed with parafilm and wrapped with foil paper to prevent drying. Ten rooted cuttings per cultivar were inoculated with the fungus and two others with uncolonized PDA plugs, as negative controls. After inoculating, rooted cuttings were planted in a plot and irrigated by a drip system with two drippers per plant. Plants were collected after eight months and inspected for lesion development. Extent of wood necrosis was measured upward and downward from the inoculation point. Three rooted cuttings for each cultivar were selected and small pieces, of necrotic tissue from de edge of each lesion, were cut and placed on malt extract agar supplemented with 0.5 g/L of streptomycin sulphate (MEAS), in an attempt to recover the inoculated fungus and complete Koch’s postulates. N. parvum was identified by morphological and molecular approaches. Mean percentage of infected rooted cuttings ranged from 42.1% (“Monastrell” cultivar) to 93.3% (“Tinto Velasco” cultivar). Mean lengths of the extent of wood necrosis caused by N. parvum on inoculated one-year-old grapevine wood ranged from 21.2 (“Bobal” cultivar) to 87.2 mm (“Tinto Velasco” cultivar). N. parvum was reisolated from the edge of each lesion in 90.3% of the cultivars. The results of statistical analysis showed that “Bobal” and “Monastrell” cultivars were significantly more tolerant than “Tinto Velasco”.  

Conclusions:

All tested grapevine cultivars were susceptible to infection by N. parvum, evidencing that there was no qualitative resistance to this fungus. “Bobal” and “Monastrell” cultivars highlighted for their lower wood response susceptibility to N. parvum.

Significance and Impact of the Study: Interactions between Botryosphaeriaceae species and grapevine cultivars are poorly understood and there is currently little data available. This study allowed classifying different Vitis vinifera cultivars based on their degree of quantitative resistance to N. parvum. “Bobal” and “Monastrell” cultivars could be potential candidates to create tolerant varieties to N. parvum fungus. Using tolerant varieties would be the safest, easiest, the least expensive and the most effective means of controlling this disease.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Juan Luis Chacón1*, David Gramaje2, Adela Mena1, Pedro Miguel Izquierdo1, Jesús Martínez1

1Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Ctra. Toledo-Albacete s/n, 13700 Tomelloso, Spain
2Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas – Universidad de la Rioja – Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain

Contact the author

Keywords

Botryosphaeria dieback, grapevine, grapevine trunk diseases, Neofusicoccum parvum

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Disentangling the sources of variation in stomatal regulation in field-grown cultivar-rootstock combinations

The inherent variability of Nature poses challenges for researchers to draw clear conclusions from field experiments. Identifying and assessing adaptations to climate change requires agronomic field trials.

Outline for the définition of “Terroirs Viticoles application to the area of El AIjarafe (Seville, Spain)

The grapes producing and wine making regions are différent in their use of agricultural, industrial or agroindustrial means. These means are quite often very original and/or specialised; and lately are also quite competitive. Such means are being defined with increased accuracy in the delimitation and definition of its characteristics (Paneque et al., 1996 a). Human action together with other Elements and Agents involved in the vine growing production (Reyner, 1989) over these means lead to agronomic systems with important characteristics. Finally, the transformation of the vine growing production, through different technologies (Fleet, 1992), results in the creation of products with a different acceptance and economical value in the market.

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

The effects of climate change produce an increase in sugar concentration and a decrease in acidity, without reaching the optimum grape phenolic maturity [1]. The aim of this work was to characterize 25 white grape varieties

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.