Terroir 2020 banner
IVES 9 IVES Conference Series 9 Understanding provenance and terroir in Australian Pinot noir

Understanding provenance and terroir in Australian Pinot noir

Abstract

Aims: This study aimed to (1) characterise colour and phenolic profiles of commercial Australian Pinot noir wines, (2) understand regional drivers of sensory and volatile profiles of commercial Australian Pinot noir wines, and (3) generate a deeper understanding of where Australian Pinot noir wines profiles sit in an international context.

Methods and Results: A broad set of commercial wines was sourced from 10 Australian Pinot noir producing wine regions (n=102) from two vintages (2015 and 2016). The modified Somers method was used for preliminary colour and phenolic analysis of the wines. Noticeable colour and phenolic profile differences were observed amongst the regions. For example, wines from Southern Tasmania were found to have consistently higher anthocyanin levels.

A sub-set of the broad group of Australian samples (n=80) was selected for grape-derived and fermentative volatile analysis (solid phase micro extraction coupled with gas chromatography–mass spectrometry) in addition to colour and phenolic analyses. Vintage was found to have a greater effect on aroma compounds than region.

A narrower set of commercial wines (n=15) was sourced from 5 Australian Pinot noir producing wine regions for in-depth sensory (Pivot© Profile) and grape-derived and fermentative volatile analysis (solid phase micro extraction coupled with gas chromatography–mass spectrometry). The sensory assessment results showed that wines from the Mornington Peninsula, and to a lesser extent two from Northern Tasmania were associated with ‘red fruits’ aroma, while the majority of wines from Adelaide Hills, Southern Tasmania, and Yarra Valley, were associated with the attributes ‘floral’ and ‘oaky’ aroma.

Conclusions:

Wine colour and phenolic analyses revealed demonstrable differences between Australian regions, and between the 2015 and 2016 vintages. Further investigation of volatile composition and sensory attributes of 2018 vintage wines showed regional sensory trends when it comes to Australia’s Pinot noir producing regions, with the Yarra Valley, Adelaide Hills and Mornington Peninsula showing similarities in their sensory profiles. However, from a sensory perspective Tasmanian Pinot noir tends to incorporate elements of all those regions into its sensory profiles, potentially reflecting the larger geographical size of the Tasmanian regions and greater terroir diversity in a single region.

Significance and Impact of the Study: The growing popularity of Pinot noir with Australian wine consumers underpins a need for better understanding the variety and its performance across varied terroirs. Many viticulturists and winemakers base agronomical and oenological practices on the colour and palate attributes of final wines. It is therefore important for the Australian wine industry to better understand the effect of regional compositional characteristics which potentially impact sensory attributes. These findings have the potential to support decision making for winemakers and viticulturists to achieve desired quality and stylistic outcomes and require further in-depth analysis of characteristics of the terroir. To the authors’ knowledge, this is the first study attempting to compare sensory and volatile profiles of Australian Pinot noir wines. Further studies including a greater number of samples and wine regions would provide more conclusive results, as would a comparative study using standardised winemaking protocols for fruit from a range of regions

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Fiona Kerslake1*, Rocco Longo1, Wes Pearson2,3, Samantha Sawyer1, Angela Merry,1 Mark Solomon3, Luca Nicolotti3,5, Hanna Westmore1, Jacqui McRae3,6, Amanda Ylia3,5, Robert Dambergs,1,2,4

1 Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, 7249, Australia
2 National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, New South Wales, 2650, Australia
3 The Australian Wine Research Institute, Urrbrae, South Australia, 5064, Australia
4 WineTQ, Ganmain, NSW, 2702, Australia 
5 Metabolomics South Australia, Urrbrae, South Australia, 5064, Australia
6School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA, 5005, Australia

Contact the author

Keywords

Australian Pinot noir, regionality, aroma, Pivot© Profile

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Above and below–research challenges for the future of winegrape production

Grapevines interact with the climate (aboveground) and the soil (belowground), affecting the characteristics of winegrapes produced. These interactions are impacted by climate change, the erosion of biodiversity, and losses of soil organic matter (SOM).

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Exploring the effect of oxygen exposure during malolactic fermentation on red wine color

this research investigates the impact of early oxygen exposure, also during malolactic fermentation (MLF), on pigments and color of a red wine from Sangiovese grapes

Dimethyl sulfide: a compound of interest from grape to wine glass

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-

Correction de la teneur en alcool des vins par évaporation partielle sous vide en cours de fermentation alcoolique

Climate change has become a reality that is becoming more and more apparent every day, with changes in the physico-chemical composition of grapes and an increase in the alcohol content of finished wines. These higher alcoholic degrees are not without consequences for the success of alcoholic and malolactic fermentation. Correcting the alcohol content (-20% of the initial alcoholic strength) is also part of an approach designed to meet consumer expectations for healthier, lighter or lower-alcohol wines (9 to 13% vol.). Correcting the alcohol content of wines also rebalances the mouthfeel by reducing the alcohol’s burn.