Terroir 2020 banner
IVES 9 IVES Conference Series 9 Understanding provenance and terroir in Australian Pinot noir

Understanding provenance and terroir in Australian Pinot noir

Abstract

Aims: This study aimed to (1) characterise colour and phenolic profiles of commercial Australian Pinot noir wines, (2) understand regional drivers of sensory and volatile profiles of commercial Australian Pinot noir wines, and (3) generate a deeper understanding of where Australian Pinot noir wines profiles sit in an international context.

Methods and Results: A broad set of commercial wines was sourced from 10 Australian Pinot noir producing wine regions (n=102) from two vintages (2015 and 2016). The modified Somers method was used for preliminary colour and phenolic analysis of the wines. Noticeable colour and phenolic profile differences were observed amongst the regions. For example, wines from Southern Tasmania were found to have consistently higher anthocyanin levels.

A sub-set of the broad group of Australian samples (n=80) was selected for grape-derived and fermentative volatile analysis (solid phase micro extraction coupled with gas chromatography–mass spectrometry) in addition to colour and phenolic analyses. Vintage was found to have a greater effect on aroma compounds than region.

A narrower set of commercial wines (n=15) was sourced from 5 Australian Pinot noir producing wine regions for in-depth sensory (Pivot© Profile) and grape-derived and fermentative volatile analysis (solid phase micro extraction coupled with gas chromatography–mass spectrometry). The sensory assessment results showed that wines from the Mornington Peninsula, and to a lesser extent two from Northern Tasmania were associated with ‘red fruits’ aroma, while the majority of wines from Adelaide Hills, Southern Tasmania, and Yarra Valley, were associated with the attributes ‘floral’ and ‘oaky’ aroma.

Conclusions:

Wine colour and phenolic analyses revealed demonstrable differences between Australian regions, and between the 2015 and 2016 vintages. Further investigation of volatile composition and sensory attributes of 2018 vintage wines showed regional sensory trends when it comes to Australia’s Pinot noir producing regions, with the Yarra Valley, Adelaide Hills and Mornington Peninsula showing similarities in their sensory profiles. However, from a sensory perspective Tasmanian Pinot noir tends to incorporate elements of all those regions into its sensory profiles, potentially reflecting the larger geographical size of the Tasmanian regions and greater terroir diversity in a single region.

Significance and Impact of the Study: The growing popularity of Pinot noir with Australian wine consumers underpins a need for better understanding the variety and its performance across varied terroirs. Many viticulturists and winemakers base agronomical and oenological practices on the colour and palate attributes of final wines. It is therefore important for the Australian wine industry to better understand the effect of regional compositional characteristics which potentially impact sensory attributes. These findings have the potential to support decision making for winemakers and viticulturists to achieve desired quality and stylistic outcomes and require further in-depth analysis of characteristics of the terroir. To the authors’ knowledge, this is the first study attempting to compare sensory and volatile profiles of Australian Pinot noir wines. Further studies including a greater number of samples and wine regions would provide more conclusive results, as would a comparative study using standardised winemaking protocols for fruit from a range of regions

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Fiona Kerslake1*, Rocco Longo1, Wes Pearson2,3, Samantha Sawyer1, Angela Merry,1 Mark Solomon3, Luca Nicolotti3,5, Hanna Westmore1, Jacqui McRae3,6, Amanda Ylia3,5, Robert Dambergs,1,2,4

1 Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania, 7249, Australia
2 National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, New South Wales, 2650, Australia
3 The Australian Wine Research Institute, Urrbrae, South Australia, 5064, Australia
4 WineTQ, Ganmain, NSW, 2702, Australia 
5 Metabolomics South Australia, Urrbrae, South Australia, 5064, Australia
6School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA, 5005, Australia

Contact the author

Keywords

Australian Pinot noir, regionality, aroma, Pivot© Profile

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Bio-based fertilisers from fruit and vegetable residues for improving soil fertility and vine status in degraded vineyards

The H2020 RUSTICA project aims to propose, demonstrate, and implement technical solutions to convert organic residues from fruit and vegetables into high-quality novel bio-based fertilisers (BBF).

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

Wine microbial diversity and cross-over applications: emerging results and future perspectives

AIM: Cross-over applications are an emerging technological approach in food microbiology where a microorganism from one traditional specific fermentation process is used to improve quality and safety in another agri-food production/chain (Dank et al., 2021). A complex microbial diversity is found in association with fermentation in wine, including Saccharomyces, non-Saccharomyces and malolactic bacteria,  all microorganisms versatile in terms of enological utilisation (Tempère et al., 2018). Here, we propose a systematic literature review highlighting the existing trends and possible future applications related to cross-over exploitation of wine-related microbiota. 

Cover crops sown in the inter-rows shape the weed communities in three vineyards across Italy

The use of cover crops (CCs) is widely proposed as an alternative to traditional soil management in vineyards to exploit a wide range of ecosystem services. The presence of a CC in the inter-row space is known to control spontaneous vegetation in vineyards, primarily through the biomass of the sown crop, which competes with other spontaneous species for soil resources.

Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

The quality of red wine depends on the composition of polyphenols influencing wine color and taste. The question is, how much we must fear over extraction, especially of seed tannins, under cool climate conditions. The extraction of polyphenols from grape skins and grape seeds were investigated for the grape varieties Cabernet Sauvignon and Pinot noir