Terroir 2020 banner
IVES 9 IVES Conference Series 9 Multidisciplinary strategies for understanding ill-defined concepts

Multidisciplinary strategies for understanding ill-defined concepts

Abstract

Aims: The objective of the present work is to review strategies applied to decrypt multidimensional and ill-defined concepts employed by winemakers and to illustrate these strategies with recent applications.

Methods and Results: The first group of strategies are based in acceding long-term memory of experts including description and association tasks. For example, in a recent study, Spanish experts were asked to provide a sensory description of a green wine from memory. Terms such as “vegetal aroma” and “unpleasant/default” were shared by experts from different regions in Spain, while “excessive sourness”, “astringency” and a term linked to wine phenolic compounds such as “tannin” presented an important idiosyncrasy related to the region of origin of winemakers. Previously, a word association task was applied for understanding the concept of minerality. Place-related (Chablis, geology and terroir) and sensory dimensions (shellfish, chalky and freshness) appeared to be the core of the concept for Chablis winemakers. The second group of strategies involves sensory tasting and chemical characterization. It was used for deciphering perceived quality, minerality and green wine concepts. This strategy includes two main steps, description of samples and chemical analysis of volatile and non-volatile chemicals with sensory activity by either targeted or untargeted instrumental approaches. For example, for a set of Spanish red wines and following a targeted instrumental approach, the samples evaluated by Spanish experts as highest quality were associated to high levels of norisoprenoids, and low levels of whiskylactones and higher alcohols. 

Significance and Impact of the Study: The multidisciplinary approaches involving sensory (including both mental and tasting approaches) and chemical strategies are pertinent and effective for deciphering multidimensional and ill-defined concepts. These approaches are useful for improving the understanding and communication among people of the wine sector. These approaches can also help the industry to optimize grape and wine production stages to achieve the desired sensory characteristics by feeding into practices for modulating the composition of wine at different production stages. Finally, these approaches are an important source of knowledge for everyone interested in science of wine tasting.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

M.P. Sáenz-Navajas1*, H. Rodrigues2, D. Valentin3

1Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Associated Unit to Institute for Vine and Wine Sciences-ICVV-(CSIC-GR-UR), Spain
2Plumpton College, Centre for excellence in Wine Education and Research, UK
3Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France

Contact the author

Keywords

Sensory, description, memory-based strategies, tasting, sensory-active

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle.