Terroir 2020 banner
IVES 9 IVES Conference Series 9 Multidisciplinary strategies for understanding ill-defined concepts

Multidisciplinary strategies for understanding ill-defined concepts

Abstract

Aims: The objective of the present work is to review strategies applied to decrypt multidimensional and ill-defined concepts employed by winemakers and to illustrate these strategies with recent applications.

Methods and Results: The first group of strategies are based in acceding long-term memory of experts including description and association tasks. For example, in a recent study, Spanish experts were asked to provide a sensory description of a green wine from memory. Terms such as “vegetal aroma” and “unpleasant/default” were shared by experts from different regions in Spain, while “excessive sourness”, “astringency” and a term linked to wine phenolic compounds such as “tannin” presented an important idiosyncrasy related to the region of origin of winemakers. Previously, a word association task was applied for understanding the concept of minerality. Place-related (Chablis, geology and terroir) and sensory dimensions (shellfish, chalky and freshness) appeared to be the core of the concept for Chablis winemakers. The second group of strategies involves sensory tasting and chemical characterization. It was used for deciphering perceived quality, minerality and green wine concepts. This strategy includes two main steps, description of samples and chemical analysis of volatile and non-volatile chemicals with sensory activity by either targeted or untargeted instrumental approaches. For example, for a set of Spanish red wines and following a targeted instrumental approach, the samples evaluated by Spanish experts as highest quality were associated to high levels of norisoprenoids, and low levels of whiskylactones and higher alcohols. 

Significance and Impact of the Study: The multidisciplinary approaches involving sensory (including both mental and tasting approaches) and chemical strategies are pertinent and effective for deciphering multidimensional and ill-defined concepts. These approaches are useful for improving the understanding and communication among people of the wine sector. These approaches can also help the industry to optimize grape and wine production stages to achieve the desired sensory characteristics by feeding into practices for modulating the composition of wine at different production stages. Finally, these approaches are an important source of knowledge for everyone interested in science of wine tasting.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

M.P. Sáenz-Navajas1*, H. Rodrigues2, D. Valentin3

1Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Associated Unit to Institute for Vine and Wine Sciences-ICVV-(CSIC-GR-UR), Spain
2Plumpton College, Centre for excellence in Wine Education and Research, UK
3Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France

Contact the author

Keywords

Sensory, description, memory-based strategies, tasting, sensory-active

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.

The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

Planting vineyards in cooler climates has been used over recent years as
a strategy to counter the climatic shifts caused by climate change. A move towards higher altitudes in hilly and mountainous wine regions may provide a solution to deleterious effects that increased ambient temperatures have on wine quality. Until now, the influences of higher altitudes and their climates, as well as their effect on vine growing cycles, still holds a lot of scientific uncertainty. The transnational EU-funded project REBECKA (Interreg V-A IT-AT: ITAT1002, duration: 2017-2019) has the objective to develop a regional valuation method to rate the suitability for viticulture in South Tyrol (Italy) and Carinthia (Austria). Preliminary surveys were performed regarding the effects of altitude on ripening performance of the cultivar Pinot Noir.

Effect of elicitors and ripening moment on the phenolic composition of Monastrell

Grapevine (Vitis vinifera L.) is a globally cultivated crop and economically significant, particularly in the wine industry (Varela et al., 2024). Climate change is already affecting vineyards and is expected to worsen (Averbeck et al., 2019; Dupuis and Knoepfel, 2011).

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995).