Terroir 2020 banner
IVES 9 IVES Conference Series 9 Multidisciplinary strategies for understanding ill-defined concepts

Multidisciplinary strategies for understanding ill-defined concepts

Abstract

Aims: The objective of the present work is to review strategies applied to decrypt multidimensional and ill-defined concepts employed by winemakers and to illustrate these strategies with recent applications.

Methods and Results: The first group of strategies are based in acceding long-term memory of experts including description and association tasks. For example, in a recent study, Spanish experts were asked to provide a sensory description of a green wine from memory. Terms such as “vegetal aroma” and “unpleasant/default” were shared by experts from different regions in Spain, while “excessive sourness”, “astringency” and a term linked to wine phenolic compounds such as “tannin” presented an important idiosyncrasy related to the region of origin of winemakers. Previously, a word association task was applied for understanding the concept of minerality. Place-related (Chablis, geology and terroir) and sensory dimensions (shellfish, chalky and freshness) appeared to be the core of the concept for Chablis winemakers. The second group of strategies involves sensory tasting and chemical characterization. It was used for deciphering perceived quality, minerality and green wine concepts. This strategy includes two main steps, description of samples and chemical analysis of volatile and non-volatile chemicals with sensory activity by either targeted or untargeted instrumental approaches. For example, for a set of Spanish red wines and following a targeted instrumental approach, the samples evaluated by Spanish experts as highest quality were associated to high levels of norisoprenoids, and low levels of whiskylactones and higher alcohols. 

Significance and Impact of the Study: The multidisciplinary approaches involving sensory (including both mental and tasting approaches) and chemical strategies are pertinent and effective for deciphering multidimensional and ill-defined concepts. These approaches are useful for improving the understanding and communication among people of the wine sector. These approaches can also help the industry to optimize grape and wine production stages to achieve the desired sensory characteristics by feeding into practices for modulating the composition of wine at different production stages. Finally, these approaches are an important source of knowledge for everyone interested in science of wine tasting.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

M.P. Sáenz-Navajas1*, H. Rodrigues2, D. Valentin3

1Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Associated Unit to Institute for Vine and Wine Sciences-ICVV-(CSIC-GR-UR), Spain
2Plumpton College, Centre for excellence in Wine Education and Research, UK
3Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France

Contact the author

Keywords

Sensory, description, memory-based strategies, tasting, sensory-active

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Characterization of vineyard sites for quality wine production. German experiences

The quality of grapevines measured by yield and must density in the northern part of Europe conditons can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another. One hundred year observations in Johannisberg from 1890 to 1991 demonstrate for the yield formation a clear dependancy from the year combined with a steady increase in productivity; latter a proof of positive clonal selection efforts.

Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Aim: To quantify the extent to which national mixes of wine grape varieties (in terms of vineyard bearing area) have become more or less diversified, and ‘internationalized’, since wine globalization accelerated from the 1990s.

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

High throughput winter pruning weight estimation based on wood volume evaluation 

There is currently a real need to improve and speed-up phenotyping in experimental set-ups to increase the number of modalities studied. Accurate information acquisition on plant status with high-throughput capacity is the main appeal of on-board systems.
A proximal sensing camera for a proxy of winter pruning weight was tested. We estimated the shoot volume of the vine by image analysis using algorithms that integrate the local shoot section area estimate along the shoot skeleton obtained by a morphological distance transform.
The study was carried out on the GreffAdapt experimental vineyard in Guyot simple training and a canopy management using vertical trellising. The planting density is 6250 vines/ha with a row spacing of 1.6×1m. Five scions grafted onto 55 rootstocks are present and the combination rootstock×scion is different every five plants.