Terroir 2020 banner
IVES 9 IVES Conference Series 9 Vine performance benchmarking of indigenous Cypriot grape varieties Xynisteri and Maratheftiko

Vine performance benchmarking of indigenous Cypriot grape varieties Xynisteri and Maratheftiko

Abstract

OENO One – Special issue

 Aim: The aims of this study were to (1) formulate a baseline understanding of the performance of the indigenous Cypriot white grape Xynisteri and the red grape Maratheftiko (Vitis vinifera L.), and (2) compare these varieties to Shiraz and Sauvignon blanc grown in a Cypriot vineyard.
Materials and results: The investigation involved multiple dry grown vineyards from the Krasochoria region of Lemesos, Cyprus, during the 2017, 2018 and 2019 vintages. Vine performance measurements, including midday stem water potential, stomatal conductance, chlorophyll content, stomata density, vine phenology and vegetative and reproductive measurements, were taken at flowering, veraison and pre-harvest. Xynisteri had the greatest stomatal density, more shoots, more leaves, heavier bunches, greater yield, higher leaf water potential at harvest, and a stomatal conductance equal to Maratheftiko, but greater than that of both Shiraz and Sauvignon blanc. Maratheftiko had the longest shoots, largest shoot diameter and the greatest chlorophyll content out of all four varieties.

Conclusions:

This study identified the ability of the indigenous Cypriot grape varieties, Xynisteri and Maratheftiko, to better tolerate hot and dry conditions when compared to more commonly cultivated varieties grown in the same environmental conditions.
Significance and impact of the study: The changing climate of wine growing regions worldwide is placing great pressure on the resources for sustainable viticulture. Many vineyards in hot climate zones base their businesses on European grape varieties traditionally grown in regions with abundant water resources. It is therefore necessary for the global wine industry to investigate grape varieties that are indigenous to hot climates. The eastern Mediterranean island of Cyprus is one such place, with more than 10 indigenous grape varieties that grow well in a hot climate without irrigation. Consumer studies have demonstrated that wines made from these Cypriot varieties are equally, if not more, acceptable than wines made from more traditional European grapes; therefore, the potential for their use in other hot wine growing regions is promising.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Alexander W. Copper1 , Christodoulos Karaolis2 , Stefanos Koundouras2 , Savvas Savvides3 , Susan E. P. Bastian1 , Trent E. Johnson1 and Cassandra Collins1

1 School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide. PMB 1, Glen Osmond, South Australia 5064, Australia.
2 School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece
3 Agricultural Research Institute, Ministry of Agriculture Rural development and Environment, P.O. Box 22016, 1516 Nicosia, Cyprus.

Contact the author

Keywords

Climate change, vine performance, adaptation, stomata density, water potential, chlorophyll content

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.