Terroir 2020 banner
IVES 9 IVES Conference Series 9 Vine performance benchmarking of indigenous Cypriot grape varieties Xynisteri and Maratheftiko

Vine performance benchmarking of indigenous Cypriot grape varieties Xynisteri and Maratheftiko

Abstract

OENO One – Special issue

 Aim: The aims of this study were to (1) formulate a baseline understanding of the performance of the indigenous Cypriot white grape Xynisteri and the red grape Maratheftiko (Vitis vinifera L.), and (2) compare these varieties to Shiraz and Sauvignon blanc grown in a Cypriot vineyard.
Materials and results: The investigation involved multiple dry grown vineyards from the Krasochoria region of Lemesos, Cyprus, during the 2017, 2018 and 2019 vintages. Vine performance measurements, including midday stem water potential, stomatal conductance, chlorophyll content, stomata density, vine phenology and vegetative and reproductive measurements, were taken at flowering, veraison and pre-harvest. Xynisteri had the greatest stomatal density, more shoots, more leaves, heavier bunches, greater yield, higher leaf water potential at harvest, and a stomatal conductance equal to Maratheftiko, but greater than that of both Shiraz and Sauvignon blanc. Maratheftiko had the longest shoots, largest shoot diameter and the greatest chlorophyll content out of all four varieties.

Conclusions:

This study identified the ability of the indigenous Cypriot grape varieties, Xynisteri and Maratheftiko, to better tolerate hot and dry conditions when compared to more commonly cultivated varieties grown in the same environmental conditions.
Significance and impact of the study: The changing climate of wine growing regions worldwide is placing great pressure on the resources for sustainable viticulture. Many vineyards in hot climate zones base their businesses on European grape varieties traditionally grown in regions with abundant water resources. It is therefore necessary for the global wine industry to investigate grape varieties that are indigenous to hot climates. The eastern Mediterranean island of Cyprus is one such place, with more than 10 indigenous grape varieties that grow well in a hot climate without irrigation. Consumer studies have demonstrated that wines made from these Cypriot varieties are equally, if not more, acceptable than wines made from more traditional European grapes; therefore, the potential for their use in other hot wine growing regions is promising.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Alexander W. Copper1 , Christodoulos Karaolis2 , Stefanos Koundouras2 , Savvas Savvides3 , Susan E. P. Bastian1 , Trent E. Johnson1 and Cassandra Collins1

1 School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide. PMB 1, Glen Osmond, South Australia 5064, Australia.
2 School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece
3 Agricultural Research Institute, Ministry of Agriculture Rural development and Environment, P.O. Box 22016, 1516 Nicosia, Cyprus.

Contact the author

Keywords

Climate change, vine performance, adaptation, stomata density, water potential, chlorophyll content

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Fermentation Products, Degradation Parameters, (Poly)Phenols And Potassium Content In Tokaji Aszú Winemaking

The historic Tokaj Wine Region in northeast Hungary, a UNESCO World Heritage region since 2002, encompasses 5,500 ha vineyards. Produced from “noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil conditions (clay, loess on volcanic bedrock) and grape

Soil mineral nitrogen dynamics in cover-cropped irrigated vineyards with contrasting soil textures

Context and purpose of the study. Cover cropping in vineyards supports grape yield, quality, and soil health.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS