Terroir 2020 banner
IVES 9 IVES Conference Series 9 Vine performance benchmarking of indigenous Cypriot grape varieties Xynisteri and Maratheftiko

Vine performance benchmarking of indigenous Cypriot grape varieties Xynisteri and Maratheftiko

Abstract

OENO One – Special issue

 Aim: The aims of this study were to (1) formulate a baseline understanding of the performance of the indigenous Cypriot white grape Xynisteri and the red grape Maratheftiko (Vitis vinifera L.), and (2) compare these varieties to Shiraz and Sauvignon blanc grown in a Cypriot vineyard.
Materials and results: The investigation involved multiple dry grown vineyards from the Krasochoria region of Lemesos, Cyprus, during the 2017, 2018 and 2019 vintages. Vine performance measurements, including midday stem water potential, stomatal conductance, chlorophyll content, stomata density, vine phenology and vegetative and reproductive measurements, were taken at flowering, veraison and pre-harvest. Xynisteri had the greatest stomatal density, more shoots, more leaves, heavier bunches, greater yield, higher leaf water potential at harvest, and a stomatal conductance equal to Maratheftiko, but greater than that of both Shiraz and Sauvignon blanc. Maratheftiko had the longest shoots, largest shoot diameter and the greatest chlorophyll content out of all four varieties.

Conclusions:

This study identified the ability of the indigenous Cypriot grape varieties, Xynisteri and Maratheftiko, to better tolerate hot and dry conditions when compared to more commonly cultivated varieties grown in the same environmental conditions.
Significance and impact of the study: The changing climate of wine growing regions worldwide is placing great pressure on the resources for sustainable viticulture. Many vineyards in hot climate zones base their businesses on European grape varieties traditionally grown in regions with abundant water resources. It is therefore necessary for the global wine industry to investigate grape varieties that are indigenous to hot climates. The eastern Mediterranean island of Cyprus is one such place, with more than 10 indigenous grape varieties that grow well in a hot climate without irrigation. Consumer studies have demonstrated that wines made from these Cypriot varieties are equally, if not more, acceptable than wines made from more traditional European grapes; therefore, the potential for their use in other hot wine growing regions is promising.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Alexander W. Copper1 , Christodoulos Karaolis2 , Stefanos Koundouras2 , Savvas Savvides3 , Susan E. P. Bastian1 , Trent E. Johnson1 and Cassandra Collins1

1 School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide. PMB 1, Glen Osmond, South Australia 5064, Australia.
2 School of Agriculture, Aristotle University, 54124, Thessaloniki, Greece
3 Agricultural Research Institute, Ministry of Agriculture Rural development and Environment, P.O. Box 22016, 1516 Nicosia, Cyprus.

Contact the author

Keywords

Climate change, vine performance, adaptation, stomata density, water potential, chlorophyll content

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Grapes from warm(ing) climates often contain excessive sugars but lack acidity. This can lead to highly alcoholic wines with compromised stability and balance. The yeast Lachancea thermotolerans can ameliorate such wines due to its metabolic peculiarity – partial fermentation of sugars to lactic acid. This study aimed to elucidate the population-wide diversity in L. thermotolerans, whilst selecting superior strains for wine sector. An extensive collection of isolates (~200) sourced from different habitats worldwide was first genotyped on 14 microsatellite loci. This revealed differentiation of L. thermotolerans genetic groups based on the isolation substrate and geography. The 94 genotyped strains were then characterised in Vitis vinifera cv. Chardonnay fermentations.

Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

In the old-world viticulture, there is a common but most often not scientifically proved consideration that supplemental irrigation should detrimentally affect berry and wine composition. In the semi-arid

The impact of postharvest cooling of Sauvignon blanc grapes on the sensory profile and the chemical composition of the wines

Rapid processing of grapes after harvest has always been considered essential for achieving a balanced sensory wine profile.

Anticipating consumer preference for low-alcohol wine: a machine learning analysis based on consumption habits and socio-demographics

The global wine consumption landscape is undergoing a transformation, marked by a growing trend towards reduced consumption and a preference for healthier lifestyles. In line with this shift, european union regulation (regulation eu 2021/2117) has recently redefined dealcoholized or partially dealcoholized wine within the wine category.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.