Terroir 2020 banner
IVES 9 IVES Conference Series 9 The vascular connections in grafted plants under examination

The vascular connections in grafted plants under examination

Abstract

Aims: Decreasing longevity of vineyards due to the increase in the infection of different grapevine trunk diseases is a growing concern, and could be related to the quality of grafting. The main aim of this study was to evaluate the use of xylem hydraulic conductivity measurements as a potential indicator for the quality of vascular connections in the graft junction of grapevine plants. For that purpose, two specific trials were carried out: (1) the quality of different batches of plants whose subjective quality was previously known from the nursery’s experience was evaluated, and (2) the vascular connections between the rootstock and the scion were evaluated on a different set of plants grafted using different grafting techniques.

Methods and Results: (1) The XYL´EM conductivity meter was used to measure the specific hydraulic conductivity (Ks) of plants from six different batches whose quality was subjectively defined from the nurseryman experience. Hydraulic conductivity was measured in one-year-old dormant plants, which were kept in a cold chamber since leaving the nursery, first on the whole plant, then on the rootstock and finally at the graft junction. Results showed that two of the six batches evaluated had significantly lower values than the others. (2) After reflecting on the previous experience, we decided to perform the measurements in growing plants, for which we used different batches of plants grafted using different techniques but keeping the same scion (Airén) and the same rootstock (110 R) in all of them. The grafting techniques used were ‘omega’, ‘full cleft’, ‘manual whip and tongue’, ‘mechanical whip and tongue’, and ‘V’. This time, Ksmeasurements were only carried out on the whole plant by determining the water flow from the scion to the rootstock. Results revealed a tendency that the maWT, meWT and V grafts had higher Ks values than FC or OM grafts, which corresponds to higher growth rates according to results previously collected on a field trial performed on the same type of grafted plants.

Conclusions:

Hydraulic conductivity measurements may be a useful trait for the evaluation of vascular connections between the rootstock and the scion in grapevine.

Significance and Impact of the Study: To the best of our knowledge, there are no similar studies in grapevine combining hydraulics measurements with grafting techniques. Results suggest that the hydraulic functioning at the graft junction could be an interesting tool to measure the quality/quantity of vascular connections on grafted plants, and be used to characterize batches in experimentation or, even, to evaluate batches from the nurseries as a quality control.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Diana Marín1*, José M. Torres-Ruiz2, F. Javier Abad1, 3, Luis G. Santesteban1

Dept. of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra, Campus Arrosadia, 31006 Pamplona, Spain
Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
3 INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain

Contact the author

Keywords

Grapevine, Vitis vinifera L., omega graft, whip and tongue, alternative graft

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Variability of Constitutive Stilbenoid Levels and Profiles in Grape Canes (Vitis spp.) depending on Genetic and Environmental Factors

Grape cane is a viticultural by-product that is currently underused or not used at all. Therefore, it bears a high potential for valorization due to the presence of anti-microbially active stilbenoids, being biologically relevant for plant defense. These compounds are highly interesting for applications in the agricultural sector as well as for the food and feed industry.

Il piano regolatore delle citta’ del vino

Obiettivo generale di questo documenta è fornire un metodo di pianificazione che superi l’organizzazione delle aree rurali, ed in particolare vitate, finalizzata unicamente all’ot­timizzazione economico produttiva delle aziende, verso una pianificazione integrata degli spazi aperti.

Rootstock effects on cv. Ugni blanc berry and wine composition

In the Cognac region in France, Ugni blanc is the most planted grape variety (98% of the 80 500 ha). This vine region is in expansion due to the success of the associated well-known brandy and the need of high grape yield to guarrantee the production of base wine for distillation. About 2 to 3000 ha are newly planted each year and rootstocks are one powerfull tool for vineyard adaptation to soil or climate change. As rootstocks ensure water and mineral nutrient supplies to the scion, it is important to better understand their effect on berry compostionnal parameters such as sugars and nitrogen compounds, which are the main precursors for fermentary aroma metabolites, the latter being quality markers for Cognac after distillation.

Studying heat waves effects on berry composition: first outlooks and challenges

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.

Smartphone as a tool for deficit irrigation management in Vitis vinifera  

Vine water status is one of the most influential factors in grape vigor, yield, and quality (Ojeda et al., 2002; Guilpart et al., 2014). Severe water deficits during the first stage of crop development (bud break to fruit set) impact yield in the current year and the following year. While during grape ripening, water availability impacts berry size, grape composition, and health status. Therefore, a correct assessment of plant water status allows for proper water management with an impact on grape yield and composition (McClymont et al, 2012; Pereyra et al., 2022).