Terroir 2020 banner
IVES 9 IVES Conference Series 9 The vascular connections in grafted plants under examination

The vascular connections in grafted plants under examination

Abstract

Aims: Decreasing longevity of vineyards due to the increase in the infection of different grapevine trunk diseases is a growing concern, and could be related to the quality of grafting. The main aim of this study was to evaluate the use of xylem hydraulic conductivity measurements as a potential indicator for the quality of vascular connections in the graft junction of grapevine plants. For that purpose, two specific trials were carried out: (1) the quality of different batches of plants whose subjective quality was previously known from the nursery’s experience was evaluated, and (2) the vascular connections between the rootstock and the scion were evaluated on a different set of plants grafted using different grafting techniques.

Methods and Results: (1) The XYL´EM conductivity meter was used to measure the specific hydraulic conductivity (Ks) of plants from six different batches whose quality was subjectively defined from the nurseryman experience. Hydraulic conductivity was measured in one-year-old dormant plants, which were kept in a cold chamber since leaving the nursery, first on the whole plant, then on the rootstock and finally at the graft junction. Results showed that two of the six batches evaluated had significantly lower values than the others. (2) After reflecting on the previous experience, we decided to perform the measurements in growing plants, for which we used different batches of plants grafted using different techniques but keeping the same scion (Airén) and the same rootstock (110 R) in all of them. The grafting techniques used were ‘omega’, ‘full cleft’, ‘manual whip and tongue’, ‘mechanical whip and tongue’, and ‘V’. This time, Ksmeasurements were only carried out on the whole plant by determining the water flow from the scion to the rootstock. Results revealed a tendency that the maWT, meWT and V grafts had higher Ks values than FC or OM grafts, which corresponds to higher growth rates according to results previously collected on a field trial performed on the same type of grafted plants.

Conclusions:

Hydraulic conductivity measurements may be a useful trait for the evaluation of vascular connections between the rootstock and the scion in grapevine.

Significance and Impact of the Study: To the best of our knowledge, there are no similar studies in grapevine combining hydraulics measurements with grafting techniques. Results suggest that the hydraulic functioning at the graft junction could be an interesting tool to measure the quality/quantity of vascular connections on grafted plants, and be used to characterize batches in experimentation or, even, to evaluate batches from the nurseries as a quality control.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Diana Marín1*, José M. Torres-Ruiz2, F. Javier Abad1, 3, Luis G. Santesteban1

Dept. of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra, Campus Arrosadia, 31006 Pamplona, Spain
Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
3 INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain

Contact the author

Keywords

Grapevine, Vitis vinifera L., omega graft, whip and tongue, alternative graft

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Climate change has a strong impact on the earlier onset of important phenological stages and plant development in viticulture.

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies
(cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.