Terroir 2020 banner
IVES 9 IVES Conference Series 9 The vascular connections in grafted plants under examination

The vascular connections in grafted plants under examination

Abstract

Aims: Decreasing longevity of vineyards due to the increase in the infection of different grapevine trunk diseases is a growing concern, and could be related to the quality of grafting. The main aim of this study was to evaluate the use of xylem hydraulic conductivity measurements as a potential indicator for the quality of vascular connections in the graft junction of grapevine plants. For that purpose, two specific trials were carried out: (1) the quality of different batches of plants whose subjective quality was previously known from the nursery’s experience was evaluated, and (2) the vascular connections between the rootstock and the scion were evaluated on a different set of plants grafted using different grafting techniques.

Methods and Results: (1) The XYL´EM conductivity meter was used to measure the specific hydraulic conductivity (Ks) of plants from six different batches whose quality was subjectively defined from the nurseryman experience. Hydraulic conductivity was measured in one-year-old dormant plants, which were kept in a cold chamber since leaving the nursery, first on the whole plant, then on the rootstock and finally at the graft junction. Results showed that two of the six batches evaluated had significantly lower values than the others. (2) After reflecting on the previous experience, we decided to perform the measurements in growing plants, for which we used different batches of plants grafted using different techniques but keeping the same scion (Airén) and the same rootstock (110 R) in all of them. The grafting techniques used were ‘omega’, ‘full cleft’, ‘manual whip and tongue’, ‘mechanical whip and tongue’, and ‘V’. This time, Ksmeasurements were only carried out on the whole plant by determining the water flow from the scion to the rootstock. Results revealed a tendency that the maWT, meWT and V grafts had higher Ks values than FC or OM grafts, which corresponds to higher growth rates according to results previously collected on a field trial performed on the same type of grafted plants.

Conclusions:

Hydraulic conductivity measurements may be a useful trait for the evaluation of vascular connections between the rootstock and the scion in grapevine.

Significance and Impact of the Study: To the best of our knowledge, there are no similar studies in grapevine combining hydraulics measurements with grafting techniques. Results suggest that the hydraulic functioning at the graft junction could be an interesting tool to measure the quality/quantity of vascular connections on grafted plants, and be used to characterize batches in experimentation or, even, to evaluate batches from the nurseries as a quality control.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Diana Marín1*, José M. Torres-Ruiz2, F. Javier Abad1, 3, Luis G. Santesteban1

Dept. of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra, Campus Arrosadia, 31006 Pamplona, Spain
Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
3 INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain

Contact the author

Keywords

Grapevine, Vitis vinifera L., omega graft, whip and tongue, alternative graft

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Méthodologie pour application et valorisation des études de terroir dans les caves cooperatives des Côtes du Rhône (France)

L’appellation d’origine contrôlée “Côtes du Rhône” se caractérise par une très forte implantation du mouvement coopératif. Afin de mieux exploiter le potentiel qualitatif de leurs terroirs, plusieurs coopératives élaborent des “cuvées terroir”, résultat des sélections de vendanges provenant de différents secteurs.

Yield formation and grape composition: more than meets the eye 

Fruit quality in grapes is not well defined but is often depicted as correlating inversely with crop yield. Both fruit yield and composition, however, are made from distinct components that interact in complex ways. Reproductive growth of grapevines extends over two growing seasons. Inflorescences initiated in buds during the previous year differentiate flowers and set and develop berries during the harvest year.

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.