Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Abstract

Aim: To investigate the impact of Geographical Indications (GI) of South Australia on the rootstock/scion-mediated methoxypyrazine accumulation within the rachis of Shiraz and Cabernet Sauvignon. 

Methods and Results: Cabernet Sauvignon and Shiraz bunches were sampled at maturity from two South Australian GIs over the 2019 and 2020 harvest periods. From each region, a minimum of 18 bunches per rootstock/scion combination were sampled from across the vineyard and their rachis material was assessed for 3-isobutyl-2-methoxypyrazine (IBMP). Results indicated that region and rootstock choice significantly affect the concentrations of methoxypyrazines within the rachis material of both Shiraz and Cabernet Sauvignon varieties at harvest. 

Conclusion: 

This research highlights the effect of regionality on the concentration of methoxypyrazines within the rachis material of Cabernet and Shiraz vines grown on common rootstock varieties. The outcomes will conceivably inform viticulturalists and winemakers of how methoxypyrazine characteristics of Shiraz and Cabernet Sauvignon rachis are impacted by common rootstock/scion combinations permitting informed rootstock selection and assisting in production of a target wine style.

Significance and Impact of the Study: The presence of rachis material during red must fermentation can confer methoxypyrazines to the wine. The presence of methoxypyrazines, and predominately 3-isobutyl-2-methoxypyrazine (IBMP), in red wine can impact the flavour and aroma profile due to their ‘green’ and ‘earthy’ characteristics. Interestingly, this phenomenon has been shown to impact the aroma profile of Shiraz wines, a variety that has not been shown to naturally produce methoxypyrazines within the berries. Furthermore, it appears that the concentration of methoxypyrazines within the rachis is mediated by rootstock/scion combination and the region in which the vines are grown. As rootstock uptake increases across Australia in response to biological threats and abiotic stresses, an understanding of the viticultural and regional influences on rootstock/scion mediated rachis composition is essential to facilitate the production of high-quality Australian wines under increasingly challenging conditions.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Ross D. Sanders1,2,3, Paul K. Boss1,3, Dimitra L. Capone1,2, Catherine Kidman4, David W. Jeffery1,2*

1Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB1 Glen Osmond, SA, 5064, Australia
2School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA, 5064, Australia
3CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
4Wynns Coonawarra Estate, 77 Memorial Drive, Coonawarra, SA 5263, Australia

Contact the author

Keywords

Shiraz, Cabernet Sauvignon, Vitis vinifera, wine aroma

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.