Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Abstract

Aim: To investigate the impact of Geographical Indications (GI) of South Australia on the rootstock/scion-mediated methoxypyrazine accumulation within the rachis of Shiraz and Cabernet Sauvignon. 

Methods and Results: Cabernet Sauvignon and Shiraz bunches were sampled at maturity from two South Australian GIs over the 2019 and 2020 harvest periods. From each region, a minimum of 18 bunches per rootstock/scion combination were sampled from across the vineyard and their rachis material was assessed for 3-isobutyl-2-methoxypyrazine (IBMP). Results indicated that region and rootstock choice significantly affect the concentrations of methoxypyrazines within the rachis material of both Shiraz and Cabernet Sauvignon varieties at harvest. 

Conclusion: 

This research highlights the effect of regionality on the concentration of methoxypyrazines within the rachis material of Cabernet and Shiraz vines grown on common rootstock varieties. The outcomes will conceivably inform viticulturalists and winemakers of how methoxypyrazine characteristics of Shiraz and Cabernet Sauvignon rachis are impacted by common rootstock/scion combinations permitting informed rootstock selection and assisting in production of a target wine style.

Significance and Impact of the Study: The presence of rachis material during red must fermentation can confer methoxypyrazines to the wine. The presence of methoxypyrazines, and predominately 3-isobutyl-2-methoxypyrazine (IBMP), in red wine can impact the flavour and aroma profile due to their ‘green’ and ‘earthy’ characteristics. Interestingly, this phenomenon has been shown to impact the aroma profile of Shiraz wines, a variety that has not been shown to naturally produce methoxypyrazines within the berries. Furthermore, it appears that the concentration of methoxypyrazines within the rachis is mediated by rootstock/scion combination and the region in which the vines are grown. As rootstock uptake increases across Australia in response to biological threats and abiotic stresses, an understanding of the viticultural and regional influences on rootstock/scion mediated rachis composition is essential to facilitate the production of high-quality Australian wines under increasingly challenging conditions.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Ross D. Sanders1,2,3, Paul K. Boss1,3, Dimitra L. Capone1,2, Catherine Kidman4, David W. Jeffery1,2*

1Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB1 Glen Osmond, SA, 5064, Australia
2School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA, 5064, Australia
3CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
4Wynns Coonawarra Estate, 77 Memorial Drive, Coonawarra, SA 5263, Australia

Contact the author

Keywords

Shiraz, Cabernet Sauvignon, Vitis vinifera, wine aroma

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998).

Effect Of Grape Polysaccharides On The Volatile Composition Of Red Wines

Yeast mannoproteins and derivates are polysaccharides produced from the cell walls of different yeast strains widely used in the winemaking and finning of wines to improve their overall stability and sensory properties.

Irrigation as a tool for heatwave mitigation: the effect of irrigation intensity and timing in Cabernet Sauvignon

Heatwave events, defined as 2 or more days reaching ≥ 38 °C, are an increasingly frequent phenomenon threatening grape production worldwide. Heat stress has been shown to have negative consequences on grapevine physiology, leading to increased evaporative demand and intensified water stress. Due to heatwaves overlapping with important stages of grapevine reproductive development, spanning from berry set to the ripening stage, severe heat can potentially compromise yield and grape quality. The physiological response of grapevine to heat stress suggests a potential use of irrigation to mitigate heatwaves, however there is limited information regarding the irrigation amounts and timings needed for this purpose. Following up on a pivotal trial conducted between 2019 and 2022, in this study irrigation treatments with varying intensity and timing of application were refined to determine their potential mitigation of heat-associated damage to yield and fruit composition.

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia / Germany. Part 1: specific GIS applications in viticulture

En vue d’une production économique de qualités des raisins optimales une connaissance des informations les plus différentes est importante. Les nouvelles technologies, telles qu’un SIG permettent de réunir les informations sur le terrain, la nature du sol, le danger d’érosion, le climat, la végétation, l’hydrographie, l’apparition de nuisible et de maladies, etc. Sur la base de cartes topographiques un SIG permet une vaste analyse, une appréciation des rapports complexes ainsi qu’une représentation cartographique. Sur la base de modélisations en trois dimensions du terrain avec le SIG, les ensembles de données saisies ainsi que leur classification au niveau local peuvent être utilisés dans la production de zonages régionaux.

Différenciation mésoclimatique des terroirs alsaciens et relation avec les paramètres du milieu naturel

The influence of climatic conditions on the development of the vine and on the quality of the wines no longer needs to be demonstrated at the scale of the vineyard, by the regional climatic characteristics, determining on this scale the viticultural potentialities (Huglin, 1978; Branas, 1946; Riou et al ., 1994); but also on a local scale, at the level of the basic terroir unit (Morlat, 1989), by the landscape differentiation of the natural environment inducing climatic variability within the same vineyard, and partly explaining differences in functioning of the vine, in connection with the processes of maturation and the quality of the wine (Becker, 1977 and 1984; Morlat, 1989 and Lebon, 1993a). According to these authors, the climatic diversity in a wine region constitutes in addition to the edaphic component, an important component of characterization of the Basic Terroir Units (UTB).