Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Abstract

Aim: To investigate the impact of Geographical Indications (GI) of South Australia on the rootstock/scion-mediated methoxypyrazine accumulation within the rachis of Shiraz and Cabernet Sauvignon. 

Methods and Results: Cabernet Sauvignon and Shiraz bunches were sampled at maturity from two South Australian GIs over the 2019 and 2020 harvest periods. From each region, a minimum of 18 bunches per rootstock/scion combination were sampled from across the vineyard and their rachis material was assessed for 3-isobutyl-2-methoxypyrazine (IBMP). Results indicated that region and rootstock choice significantly affect the concentrations of methoxypyrazines within the rachis material of both Shiraz and Cabernet Sauvignon varieties at harvest. 

Conclusion: 

This research highlights the effect of regionality on the concentration of methoxypyrazines within the rachis material of Cabernet and Shiraz vines grown on common rootstock varieties. The outcomes will conceivably inform viticulturalists and winemakers of how methoxypyrazine characteristics of Shiraz and Cabernet Sauvignon rachis are impacted by common rootstock/scion combinations permitting informed rootstock selection and assisting in production of a target wine style.

Significance and Impact of the Study: The presence of rachis material during red must fermentation can confer methoxypyrazines to the wine. The presence of methoxypyrazines, and predominately 3-isobutyl-2-methoxypyrazine (IBMP), in red wine can impact the flavour and aroma profile due to their ‘green’ and ‘earthy’ characteristics. Interestingly, this phenomenon has been shown to impact the aroma profile of Shiraz wines, a variety that has not been shown to naturally produce methoxypyrazines within the berries. Furthermore, it appears that the concentration of methoxypyrazines within the rachis is mediated by rootstock/scion combination and the region in which the vines are grown. As rootstock uptake increases across Australia in response to biological threats and abiotic stresses, an understanding of the viticultural and regional influences on rootstock/scion mediated rachis composition is essential to facilitate the production of high-quality Australian wines under increasingly challenging conditions.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Ross D. Sanders1,2,3, Paul K. Boss1,3, Dimitra L. Capone1,2, Catherine Kidman4, David W. Jeffery1,2*

1Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB1 Glen Osmond, SA, 5064, Australia
2School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA, 5064, Australia
3CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia
4Wynns Coonawarra Estate, 77 Memorial Drive, Coonawarra, SA 5263, Australia

Contact the author

Keywords

Shiraz, Cabernet Sauvignon, Vitis vinifera, wine aroma

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

DNA-free editing to improve stress resilience of wine grape genotypes recalcitrant-to-regeneration

Wine viticulture, being firmly linked to the vine-terroir relationship, has always encountered significant bottlenecks to genetic innovation. Nonetheless, the development of new breeding strategies leading to the selection of stress resilient genotypes is urgent, especially in viticulture, where it would allow reducing the use of chemical treatments adopted to control fungal diseases. Genome editing represents an extremely promising breeding technique. Unfortunately, the well-known recalcitrance of several wine grape cultivars to in vitro regeneration strongly limits the exploitation of this approach, which to our knowledge has so far been developed on table grape genotypes with high regeneration potential.

White wine light-strike fault: a comparison between flint and green bottles under the typical supermarket conditions

Consumer preference favors flint-glass wine bottles over the traditional dark-colored, but it is documented that light exposure can cause white wines to produce off-aromas and change in color, and consequently da[1]mage their quality. Aim of the study was to study the white wine shelf life under the typical supermarket conditions, by recording the light and temperature exposure, the colorimetric changes, and the light-strike fault. METHODS: One pilot experiment based on two white wines and eight-time points and one kinetic experiment based on four white wines and seven-time points were designed and realized using a typical supermarket shelf for 32 and 50 days, correspondently. By installing prototype sensors at 32 points of the shelf, the temperature, UV, IR, and Visible light exposure were registered every 10 min. Approximately 600 commercial wines, bottled in flint and colored glass, were used. The colorimetric changes of the wines were registered and the light-strike fault was evaluated.

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).