Terroir 2020 banner
IVES 9 IVES Conference Series 9 Agronomic and qualitative effects of early leaf removal on cv.

Agronomic and qualitative effects of early leaf removal on cv.

Abstract

Aim: The regulation of the vegetative-reproductive balance of a vineyard is a critical aspect for the quality of grapes. Early leaf removal, generally applied before the phenological stage of flowering, is mainly used as a technique to control yield and improve grape health, aimed at increasing the quality of the wine. The vineyard’s response to early leaf removal may depend on the variety, climate, and growing conditions. The aim of this study is to assess the impacts of early leaf removal on the optimisation of the grape ripening process.

Methods and Results: In the D.O. Rueda, Spain, throughout the period of 2015-2018, the application of basal leaf removal was applied at the beginning of flowering.  The first eight adult leaves were removed from the base of all the shoots and vine performance assessed. The trial was carried out in a rain fed vineyard of Verdejo, grafted to 110R, planted in 2006, with 2.60 x 1.25 m row and vine spacing, and trained on to a vertical trellis. 

Early leaf removal reduced yield by 15%, through a reduction in the bunch weight, affected by a reduction in the number of berries. The weight of the berry and the number of clusters per vine were not affected by early leaf removal. The vegetative development was affected by leaf removal, slightly reducing the leaf area and the pruning weight, in line with the weight of the shoot, also reducing the Ravaz index.

The concentration of sugars increased slightly due to early leaf removal. The pH of must was slightly lower, while the titratable acidity and the tartaric acid increased slightly with the application of leaf removal. The malic acid decreased and the potassium increased slightly due to early leaf removal.

Conclusions:

Early leaf removal can be applied to control yield and to favour the maturation and the quality of Verdejo grapes grown under rainfed conditions. However, its application must be considered according to the climatic situation and the type of wine that is intended to be produced.

Significance and Impact of the Study: A benefit of early leaf removal is a reduction in cluster compactness and cluster weight which can improve the grape quality in the cv. Verdejo under rainfed conditions, taking into account the desired grape characteristics.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Jesus Yuste* and Daniel Martinez-Porro

Instituto Tecnologico Agrario de Castilla y Leon, Ctra. Burgos km 119, 47071 Valladolid, Spain

Contact the author

Keywords

Acidity, grapevine, ripening, sugars, yield

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Control of grapevine virus diseases in collections and at the stages of propagation in Ukraine

The principles of virological control on different types of grapevine collections and plantations are summarized.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

Yield prediction assessment before bloom and at veraison in a cv. Airén high yielding vineyard in Toledo (La Mancha, Spain)

Anticipation in the possible responses of grapevines to environmental variations is key to adjust field work in view of a more effective management. This idea has been the driving force behind the current work, which seeks to understand the interaction patterns of the vine with its habitat throughout the growing cycle.

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.