Terroir 2020 banner
IVES 9 IVES Conference Series 9 Agronomic and qualitative effects of early leaf removal on cv.

Agronomic and qualitative effects of early leaf removal on cv.

Abstract

Aim: The regulation of the vegetative-reproductive balance of a vineyard is a critical aspect for the quality of grapes. Early leaf removal, generally applied before the phenological stage of flowering, is mainly used as a technique to control yield and improve grape health, aimed at increasing the quality of the wine. The vineyard’s response to early leaf removal may depend on the variety, climate, and growing conditions. The aim of this study is to assess the impacts of early leaf removal on the optimisation of the grape ripening process.

Methods and Results: In the D.O. Rueda, Spain, throughout the period of 2015-2018, the application of basal leaf removal was applied at the beginning of flowering.  The first eight adult leaves were removed from the base of all the shoots and vine performance assessed. The trial was carried out in a rain fed vineyard of Verdejo, grafted to 110R, planted in 2006, with 2.60 x 1.25 m row and vine spacing, and trained on to a vertical trellis. 

Early leaf removal reduced yield by 15%, through a reduction in the bunch weight, affected by a reduction in the number of berries. The weight of the berry and the number of clusters per vine were not affected by early leaf removal. The vegetative development was affected by leaf removal, slightly reducing the leaf area and the pruning weight, in line with the weight of the shoot, also reducing the Ravaz index.

The concentration of sugars increased slightly due to early leaf removal. The pH of must was slightly lower, while the titratable acidity and the tartaric acid increased slightly with the application of leaf removal. The malic acid decreased and the potassium increased slightly due to early leaf removal.

Conclusions:

Early leaf removal can be applied to control yield and to favour the maturation and the quality of Verdejo grapes grown under rainfed conditions. However, its application must be considered according to the climatic situation and the type of wine that is intended to be produced.

Significance and Impact of the Study: A benefit of early leaf removal is a reduction in cluster compactness and cluster weight which can improve the grape quality in the cv. Verdejo under rainfed conditions, taking into account the desired grape characteristics.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Jesus Yuste* and Daniel Martinez-Porro

Instituto Tecnologico Agrario de Castilla y Leon, Ctra. Burgos km 119, 47071 Valladolid, Spain

Contact the author

Keywords

Acidity, grapevine, ripening, sugars, yield

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Implications of grapevine row orientation in South Africa

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation.

Les micro-zones et les technologies traditionnelles de la viniculture en Géorgie

La Géorgie est un pays d’une tradition très ancienne de viticulture et de viniculture. Là, dans les micro zones spécifiques, en précisant le lieu on produit de différents types du vin d’une

Effects of winemaking practices on Pinot blanc quality

Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles

Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Temperature is a relevant parameter during vineyard development, affecting vine phenology and grape maturity. Moreover, the climate of the different Chilean valleys influences the varieties cultivated, the ripening period and the final quality of the wines. The use of growing degree days (GDD) is known worldwide for the study of climate in viticulture regions. However, little is known about the evolution of maturity and the sugar loading stop, based on this parameter.

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.