Terroir 2020 banner
IVES 9 IVES Conference Series 9 Podcasts – Terroir Congress 2020

Podcasts – Terroir Congress 2020

Abstract

All about “Australian grapevine stories”

Trailer: Australian grapevine stories

Narrator Andrew Caillard MW explores the wonderful and surprising story of grape vines in Australia. It starts with the ambitions of Georgian England and takes the listener on a four-part journey through the Victorian age, Federation and contemporary times. This easy listening, unstuffy and well-researched four-part series was recorded especially for the 13th Terroir Congress.

 

This trailer introduces the podcasts and acknowledges the key people behind the project.

Part 1: 1788 to 1820s – A race to the other side of the world

Ambitions for a wine industry in New South Wales were caught up in the British Government’s aspirations of expanding trade routes and wealth creation. From 1788 to the 1820s, colonial wine was a cottage industry but the pioneers from Sir Joseph Banks in London to John Macarthur and nurseryman Thomas Shepherd in Sydney believed that Australia could become the France of the Southern Hemisphere. But the first years of settlement were not without political troubles and serious economic challenges.

Part 2: 1820s to 1855 – Convictions and transportation

There were many new importations of vitis vinifera during the 1820s to 1855. The most famous was the remarkable collection of grape vines imported into New South Wales by James Busby in 1832. William Macarthur of Camden Nurseries becomes a highly influential figure supplying many of Australia’s earliest pioneers with vine stock material for planting in the Australian colonies. This was also the dawn of the steam age, the beginning of the gold rush (1851) and the Universal Exhibition in Paris (1855).

Part 3: 1855 to 1960s – Grand dreams and boom-bust-boom

Fortunes were mixed after the great promise of the 1860s and early 1870s. Many of Australia’s greatest 19th Century vineyards were planted during this time. Economic, social and agricultural challenges hampered progress. The arrival of Phylloxera in Victoria in 1875 was met with a scorched earth policy. But South Australia’s quarantine laws protected the vast plantings of grape vines especially around Adelaide, McLaren Vale, Barossa and the Clare Valleys. Australian Burgundy boomed in the 1880s and 1890s. After the Second World War plant breeding programmes were introduced to improve colonial vinestock material, while only a trickle of new clones and selections were permitted into Australia.

Part 4: 1970s to Today – A step back into the future

The golden period of modern wine was enabled by the dreams and hard work of past generations. While 19th Century vinestock reflects the romance and dramas of the Georgian Victorian ages, new material is required to build on those extraordinary efforts. The pursuit for ideal chardonnay clones led to the arrival of 19th Century Californian vinestock material into Australia. In the meantime, alternative varieties might not be that alternative given their history in Australia. Australia’s colonial vinestock heritage is one of the four corner stones of our modern wine industry.

© graphical sources: Part 3: Henschke Wines – Dragan Radocaj, Part 4: Leeuwin Estate, Margaret River

DOI:

Publication date: March 26, 2021

Issue: Terroir 2020

Type : Podcast

Tags

IVES Conference Series | Podcast | Terroir 2020

Citation

Related articles…

Sensory impact of acetaldehyde addition in Syrah red wines

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-

Influence of edapho-climatic factors on grape quality in Conca de Barberà vineyards (Catalonia, Spain)

Soil and climate of 3 vineyards have been characterised in order to determine their influence on grape quality. These vineyards are located in Conca de Barberà (Catalonia, NE Spain) and belong to Cabernet sauvignon and Grenache noir cultivars. All 3 plots are very close, so only interannual climatic data of the nearest meteorological station have been considered.

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

High-resolution climate modelling for the Cognac region under climate change

Climate change has varied effects across French vineyards, with marked regional differences in temperature shifts. Fine-scale studies highlight significant local climate variability, emphasizing the need for precise regional characterization to adapt vineyard management at the regional scale.

Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Grapevine yield has been historically overlooked, assuming a strong trade-off between grape yield and wine quality. At present, menaced by climate change, many vineyards in Southern France are far from the quality label threshold, becoming grapevine yield-gaps a major subject of concern. Although yield-gaps are well studied in arable crops, we know very little about grapevine yield-gaps. In the present study, we analysed the environmental component of grapevine yield-gaps linked to climate and soil resources in the Languedoc Roussillon. We used SAFRAN data and IGP Pays d’Oc wine yields from 2010 to 2018. We selected climate and soil indicators proving to have a significant effect on average wine yield-gaps at the municipality scale. The most significant factors of grapevine yield were the Soil Available Water Capacity; followed by the Huglin Index and the Climatic Dryness Index. The Days of Frost; the Soil pH; and the Very Hot Days were also significant. Then, we clustered geographical zones presenting similar indicators, facilitating the identification of resources yield-gaps. We discussed the number of zones with the experts of IGP Pays d’Oc label, obtaining 7 zones with similar limitations for grapevine yield. Finally, we analysed the main resources causing yield-gaps and the grapevine varieties planted on each zone. Mapping grapevine resource yield-gaps are the first stage for understanding grapevine yield-gaps at the regional scale.