Terroir 2020 banner
IVES 9 IVES Conference Series 9 Podcasts – Terroir Congress 2020

Podcasts – Terroir Congress 2020

Abstract

All about “Australian grapevine stories”

Trailer: Australian grapevine stories

Narrator Andrew Caillard MW explores the wonderful and surprising story of grape vines in Australia. It starts with the ambitions of Georgian England and takes the listener on a four-part journey through the Victorian age, Federation and contemporary times. This easy listening, unstuffy and well-researched four-part series was recorded especially for the 13th Terroir Congress.

 

This trailer introduces the podcasts and acknowledges the key people behind the project.

Part 1: 1788 to 1820s – A race to the other side of the world

Ambitions for a wine industry in New South Wales were caught up in the British Government’s aspirations of expanding trade routes and wealth creation. From 1788 to the 1820s, colonial wine was a cottage industry but the pioneers from Sir Joseph Banks in London to John Macarthur and nurseryman Thomas Shepherd in Sydney believed that Australia could become the France of the Southern Hemisphere. But the first years of settlement were not without political troubles and serious economic challenges.

Part 2: 1820s to 1855 – Convictions and transportation

There were many new importations of vitis vinifera during the 1820s to 1855. The most famous was the remarkable collection of grape vines imported into New South Wales by James Busby in 1832. William Macarthur of Camden Nurseries becomes a highly influential figure supplying many of Australia’s earliest pioneers with vine stock material for planting in the Australian colonies. This was also the dawn of the steam age, the beginning of the gold rush (1851) and the Universal Exhibition in Paris (1855).

Part 3: 1855 to 1960s – Grand dreams and boom-bust-boom

Fortunes were mixed after the great promise of the 1860s and early 1870s. Many of Australia’s greatest 19th Century vineyards were planted during this time. Economic, social and agricultural challenges hampered progress. The arrival of Phylloxera in Victoria in 1875 was met with a scorched earth policy. But South Australia’s quarantine laws protected the vast plantings of grape vines especially around Adelaide, McLaren Vale, Barossa and the Clare Valleys. Australian Burgundy boomed in the 1880s and 1890s. After the Second World War plant breeding programmes were introduced to improve colonial vinestock material, while only a trickle of new clones and selections were permitted into Australia.

Part 4: 1970s to Today – A step back into the future

The golden period of modern wine was enabled by the dreams and hard work of past generations. While 19th Century vinestock reflects the romance and dramas of the Georgian Victorian ages, new material is required to build on those extraordinary efforts. The pursuit for ideal chardonnay clones led to the arrival of 19th Century Californian vinestock material into Australia. In the meantime, alternative varieties might not be that alternative given their history in Australia. Australia’s colonial vinestock heritage is one of the four corner stones of our modern wine industry.

© graphical sources: Part 3: Henschke Wines – Dragan Radocaj, Part 4: Leeuwin Estate, Margaret River

DOI:

Publication date: March 26, 2021

Issue: Terroir 2020

Type : Podcast

Tags

IVES Conference Series | Podcast | Terroir 2020

Citation

Related articles…

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

La vinicultura en regiones tropicales Brasileras

La producción mundial de uvas para mesa es obtenida de viñedos localizados entre los paralelos 30 y 50º Latitud Norte y 30 y 40º Latitud Sur.

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.