Terroir 2020 banner
IVES 9 IVES Conference Series 9 Podcasts – Terroir Congress 2020

Podcasts – Terroir Congress 2020

Abstract

All about “Australian grapevine stories”

Trailer: Australian grapevine stories

Narrator Andrew Caillard MW explores the wonderful and surprising story of grape vines in Australia. It starts with the ambitions of Georgian England and takes the listener on a four-part journey through the Victorian age, Federation and contemporary times. This easy listening, unstuffy and well-researched four-part series was recorded especially for the 13th Terroir Congress.

 

This trailer introduces the podcasts and acknowledges the key people behind the project.

Part 1: 1788 to 1820s – A race to the other side of the world

Ambitions for a wine industry in New South Wales were caught up in the British Government’s aspirations of expanding trade routes and wealth creation. From 1788 to the 1820s, colonial wine was a cottage industry but the pioneers from Sir Joseph Banks in London to John Macarthur and nurseryman Thomas Shepherd in Sydney believed that Australia could become the France of the Southern Hemisphere. But the first years of settlement were not without political troubles and serious economic challenges.

Part 2: 1820s to 1855 – Convictions and transportation

There were many new importations of vitis vinifera during the 1820s to 1855. The most famous was the remarkable collection of grape vines imported into New South Wales by James Busby in 1832. William Macarthur of Camden Nurseries becomes a highly influential figure supplying many of Australia’s earliest pioneers with vine stock material for planting in the Australian colonies. This was also the dawn of the steam age, the beginning of the gold rush (1851) and the Universal Exhibition in Paris (1855).

Part 3: 1855 to 1960s – Grand dreams and boom-bust-boom

Fortunes were mixed after the great promise of the 1860s and early 1870s. Many of Australia’s greatest 19th Century vineyards were planted during this time. Economic, social and agricultural challenges hampered progress. The arrival of Phylloxera in Victoria in 1875 was met with a scorched earth policy. But South Australia’s quarantine laws protected the vast plantings of grape vines especially around Adelaide, McLaren Vale, Barossa and the Clare Valleys. Australian Burgundy boomed in the 1880s and 1890s. After the Second World War plant breeding programmes were introduced to improve colonial vinestock material, while only a trickle of new clones and selections were permitted into Australia.

Part 4: 1970s to Today – A step back into the future

The golden period of modern wine was enabled by the dreams and hard work of past generations. While 19th Century vinestock reflects the romance and dramas of the Georgian Victorian ages, new material is required to build on those extraordinary efforts. The pursuit for ideal chardonnay clones led to the arrival of 19th Century Californian vinestock material into Australia. In the meantime, alternative varieties might not be that alternative given their history in Australia. Australia’s colonial vinestock heritage is one of the four corner stones of our modern wine industry.

© graphical sources: Part 3: Henschke Wines – Dragan Radocaj, Part 4: Leeuwin Estate, Margaret River

DOI:

Publication date: March 26, 2021

Issue: Terroir 2020

Type : Podcast

Tags

IVES Conference Series | Podcast | Terroir 2020

Citation

Related articles…

LCA: an effective, generalizable method for wine ecodesign? Advantages and limitations

Life cycle assessment (LCA) is an effective and comprehensive method for evaluating the environmental impact of a product, considering its entire life cycle. In the context of wine production, although the use of lca is gaining ground in viticulture, its application is still limited to the fine assessment of winemaking processes.

Climate change is here to stay: adapting vineyards to a warming world

As an industry that thrives more on, but may also be more affected by, vintage variation and regionality than any other agricultural enterprise, grape and wine production is ever more being impacted challenged by climate change.

The real sour grapes: genetic Loci, genes, and metabolic changes associated with grape malate levels

Insufficient levels of malate and lack of acidity in commercial grape cultivars (V.vinifera) hinders the quality of fruit grown in warm climates. Conversely, excessive levels of malate and sourness in wild Vitis grape, leads to unpalatable fruit and complicates the introgression of valuable disease resistant alleles through breeding. Nonetheless, albeit decades of research, knowledge regarding the molecular regulation of malate levels in grape remains limited.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl
compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance