Terroir 2020 banner
IVES 9 IVES Conference Series 9 Podcasts – Terroir Congress 2020

Podcasts – Terroir Congress 2020

Abstract

All about “Australian grapevine stories”

Trailer: Australian grapevine stories

Narrator Andrew Caillard MW explores the wonderful and surprising story of grape vines in Australia. It starts with the ambitions of Georgian England and takes the listener on a four-part journey through the Victorian age, Federation and contemporary times. This easy listening, unstuffy and well-researched four-part series was recorded especially for the 13th Terroir Congress.

 

This trailer introduces the podcasts and acknowledges the key people behind the project.

Part 1: 1788 to 1820s – A race to the other side of the world

Ambitions for a wine industry in New South Wales were caught up in the British Government’s aspirations of expanding trade routes and wealth creation. From 1788 to the 1820s, colonial wine was a cottage industry but the pioneers from Sir Joseph Banks in London to John Macarthur and nurseryman Thomas Shepherd in Sydney believed that Australia could become the France of the Southern Hemisphere. But the first years of settlement were not without political troubles and serious economic challenges.

Part 2: 1820s to 1855 – Convictions and transportation

There were many new importations of vitis vinifera during the 1820s to 1855. The most famous was the remarkable collection of grape vines imported into New South Wales by James Busby in 1832. William Macarthur of Camden Nurseries becomes a highly influential figure supplying many of Australia’s earliest pioneers with vine stock material for planting in the Australian colonies. This was also the dawn of the steam age, the beginning of the gold rush (1851) and the Universal Exhibition in Paris (1855).

Part 3: 1855 to 1960s – Grand dreams and boom-bust-boom

Fortunes were mixed after the great promise of the 1860s and early 1870s. Many of Australia’s greatest 19th Century vineyards were planted during this time. Economic, social and agricultural challenges hampered progress. The arrival of Phylloxera in Victoria in 1875 was met with a scorched earth policy. But South Australia’s quarantine laws protected the vast plantings of grape vines especially around Adelaide, McLaren Vale, Barossa and the Clare Valleys. Australian Burgundy boomed in the 1880s and 1890s. After the Second World War plant breeding programmes were introduced to improve colonial vinestock material, while only a trickle of new clones and selections were permitted into Australia.

Part 4: 1970s to Today – A step back into the future

The golden period of modern wine was enabled by the dreams and hard work of past generations. While 19th Century vinestock reflects the romance and dramas of the Georgian Victorian ages, new material is required to build on those extraordinary efforts. The pursuit for ideal chardonnay clones led to the arrival of 19th Century Californian vinestock material into Australia. In the meantime, alternative varieties might not be that alternative given their history in Australia. Australia’s colonial vinestock heritage is one of the four corner stones of our modern wine industry.

© graphical sources: Part 3: Henschke Wines – Dragan Radocaj, Part 4: Leeuwin Estate, Margaret River

Publication date: March 26, 2021

Issue: Terroir 2020

Type : Podcast

Tags

IVES Conference Series | Podcast | Terroir 2020

Related articles…

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Kinetic study of browning caused by laccase activity using different substrates

To our knowledge all the studies about laccase kinetics and its inhibition have been performed with substrates and conditions very different from those of real grape juice. Moreover, none of these researches really measure enzymatic browning, since they have not taken into account what happens after the oxidation of o-diphenols in o-diquinones and their subsequent polymerization to form melanins1. For that reason, the aim of this research was to develop a new model to measure the kinetics of browning caused by Botrytis cinerea laccase under conditions much closer to those of grape juice and using the substrates naturally present in it.

Use of fumaric acid on must or during alcoholic fermentation

Fumaric acid has been approved by the OIV in 2021 for its application on wine to control the growth and activity of lactic acid bacteria. Fumaric acid is currently being evaluated by the OIV as an acidifier of must and wine. Investigations during the 2023 vintage provided further information on its use on must or during AF, thus completing information provided during the previous vintage.

ReGenWine: A transdisciplinary project to assess concepts in regenerative viticulture

Regenerative agriculture is a set of agricultural practices that focus on improving the health of the soil, increasing biodiversity, and enhancing ecosystem services.

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs.