Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 X-ray tomography: a promising tool to assess the selection of good quality grafted vines

X-ray tomography: a promising tool to assess the selection of good quality grafted vines

Abstract

The production of grated vines is a complex process from grafting to final sorting in nurseries. To reach the market, grafted grapevines must meet three criteria by law in France: resistance to a manual graft union test (named thumb test), a minimum number of three roots and a woody shoot of at least 2 cm long. The thumb test is in essence unmeasurable in view of its manual and subjective execution and does not allow to evaluate the internal quality of the junctions. The development of tools and medical imaging methods may help to assess the internal quality of the graft union.

Commonly used in the medical field to identify some pathologies, X-ray tomography is also used in other fields including plant biology because of its ability to image structures in depth. Previous work on vines has shown its interest to distinguish the pith, the phloem, the xylem vessels and the necrotic tissues. We decided to investigate its ability to identify possible internal criteria relevant to the selection of good quality grafted vines prior to marketing. 

We therefore developed a specific methodology in terms of scanning parameters, 3D reconstruction and images analysis able to be used onto many plants. It was then applied onto 110 vines, Omega-grafted, just before being sorted. Different internal anatomical and functional criteria were measured in the rootstock, the scion and the graft area. Two criteria (“Quantity of xylem produced after grafting” and “Air and necrosis volume in the grafting area”) appeared interesting because they present statically different values on the batches that pass or not the sorting process. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Anne-Sophie Spilmont*, Camille Carrere, Yosra Hmedi and Guillaume Mathieu

Institut Français de la Vigne et du vin (IFV), Montpellier, France.

Contact the author

Keywords

grafting, 3D imaging, X-ray Tomography, nursery, graft quality

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Study of cross-modal interactions through sensory and chemical characteristics of italian red wines

This work aimed at investigating red wine olfactory–oral cross-modal interactions, and at testing their impact on the correlations between sensory and chemical variables. Seventy-four Italian red whole wines (WWs) from 10 varieties, and corresponding deodorized wines (DWs), were evaluated by sensory descriptive assessment.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.