Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Characterized one of the largest collections of grapevine rootstocks (non-vinifera)

Characterized one of the largest collections of grapevine rootstocks (non-vinifera)

Abstract

Microsatellite markers are a valuable tool to facilitate the management of germplasm collections and assess genetic diversity. This study reports the genetic characterization of a large collection of 379 rootstocks and other non-viniferaaccessions maintained at the University of Milan, Italy. Accessions were genotyped with 22 highly polymorphic microsatellite markers, including the nine “international” loci used for grapevine identification, three VMC, three VrZAG, and seven VChr loci; 17 loci were retained to identify cultivars, investigate genetic diversity, analyze pedigrees, infer population structure, and design a core collection. This study identified 232 unique genotypes; the allelic profiles of 70 rootstocks were confirmed according to the literature and databases, while the profiles of 43 rootstocks were proposed for the first time. Pedigree analysis highlighted 77 parents-offspring trios and 44 parent-offspring relationships, some of them already known and others new. Genetic-structure analysis showed a more likely number of three ancestral groups, with a high percentage of admixed samples. A structure based on the genetic background of genotypes was not observed. A core collection of 70 genotypes captured 100% of the entire number (373) of detected alleles. Most of these genotypes were unidentified or poorly characterized. The information provided in this paper could assist breeders in their efforts to exploit still unexplored individuals useful for long-term breeding plans. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Gabriella De Lorenzis1*, Daniele Migliaro2, Davide Bianchi1, Giovambattista Simone Di Lorenzo1, Barbara De Nardi2, Massimo Gardiman2, Osvaldo Failla1, Lucio Brancadoro1, Manna Crespan2*

Department of Agricultural and Environmental Sciences, Milano, Italy
CREA – Research Centre for Viticulture and Enology, Conegliano, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Climate change has become a major challenge for grape and wine production around the world

A multidisciplinary approach to grapevine zoning G.I.S. technology based: an example of thermal data elaboration

Un grand nombre d’études ont été consacrées à l’évaluation quantitative des effets de climat sur la qualité des vignes, dans différents contextes climatiques. Généralement, la vocation viticole d’un terroire peut être étudiée par des approches mono ou multidisciplinaires.

Caractérisation et gestion de la maturation par terroir en Champagne

Pour prévoir et gérer chaque année les principales caractéristiques de la maturation en Champagne, le CIVC (Comité Interprofessionnel du Vin de Champagne) a développé un ensemble de moyens de prévision et d’information très performants qui permettent aux différents acteurs de la filière viti-vinicole de prendre en compte ces informations à l’échelle de chaque terroir communal pour la recherche d’une qualité optimale.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.