Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Characterized one of the largest collections of grapevine rootstocks (non-vinifera)

Characterized one of the largest collections of grapevine rootstocks (non-vinifera)

Abstract

Microsatellite markers are a valuable tool to facilitate the management of germplasm collections and assess genetic diversity. This study reports the genetic characterization of a large collection of 379 rootstocks and other non-viniferaaccessions maintained at the University of Milan, Italy. Accessions were genotyped with 22 highly polymorphic microsatellite markers, including the nine “international” loci used for grapevine identification, three VMC, three VrZAG, and seven VChr loci; 17 loci were retained to identify cultivars, investigate genetic diversity, analyze pedigrees, infer population structure, and design a core collection. This study identified 232 unique genotypes; the allelic profiles of 70 rootstocks were confirmed according to the literature and databases, while the profiles of 43 rootstocks were proposed for the first time. Pedigree analysis highlighted 77 parents-offspring trios and 44 parent-offspring relationships, some of them already known and others new. Genetic-structure analysis showed a more likely number of three ancestral groups, with a high percentage of admixed samples. A structure based on the genetic background of genotypes was not observed. A core collection of 70 genotypes captured 100% of the entire number (373) of detected alleles. Most of these genotypes were unidentified or poorly characterized. The information provided in this paper could assist breeders in their efforts to exploit still unexplored individuals useful for long-term breeding plans. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Gabriella De Lorenzis1*, Daniele Migliaro2, Davide Bianchi1, Giovambattista Simone Di Lorenzo1, Barbara De Nardi2, Massimo Gardiman2, Osvaldo Failla1, Lucio Brancadoro1, Manna Crespan2*

Department of Agricultural and Environmental Sciences, Milano, Italy
CREA – Research Centre for Viticulture and Enology, Conegliano, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

Methodological advances in relating deep root activity to whole vine physiology

Full understanding of grapevine responses to variable soil resources requires
assessing the grapevine root system. Grapevine root systems are expansive and examining deep roots (i.e., >40 cm)
is particularly important in conditions where grapevines increase reliance on deep soil resources, such as drought
or plant competition. Traditional methods of assessing roots rely on morphological traits associated specific
functions (e.g., root color, diameter, length), while recent methodological advances allow for estimating root
function more directly (e.g., omics). Yet, the potential of applying refined methods remains underexplored for roots
at deep depths.

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.

Multi-mineral wine profiling and Artificial Intelligence: Implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry

Multi-mineral wine profiling and artificial intelligence: implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry. Although their quantity is minimal, minerals are essential elements in the composition of every wine. Their presence is the result of complex interactions between factors such as soil, vines, climate, topography, and viticultural practices, all influenced by the terroir. Each stage of the winemaking process also contributes to shaping the unique mineral and taste profile of each wine, giving each cuvée its distinctive characteristics.

Contribution of Electrical Resistivity Tomography (ERT) measurements for characterizing hydrological behaviour of an experimental plot in relation to pedo-geological factors (AOC Gaillac, SW France)

Electrical Resistivity Tomography (ERT) measurements have been performed by the Wenner method on an experimental plot situated in Gaillac region.