Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 PulvéLab: an experimental vineyard for innovation in precision spraying

PulvéLab: an experimental vineyard for innovation in precision spraying

Abstract

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies is paving the way for the development and diffusion of innovative digital solutions for precision spraying in vineyards. The PulvéLab is a new project launched in 2018 by the research joint unit team ECOTECH (IFV-IRSTEA). This project aims to accelerate innovation in precision viticulture by offering public and private partners a dedicated vineyard estate of 10ha (Hérault, France) to (i) test, (ii) evaluate and (iii) demonstrate the performance of their innovative solutions in operational conditions. The spatial and temporal variations of the vineyard were finely characterized. This characterization has been carried out in partnership with suppliers of vegetation index mapping, either by proxidetection sensors (Lidar IFV-IRSTEA, ForceA, Greenseeker), by Unmanned Aerial Vehicles (VineView, Chouette, Fruition Science) or by satellite (ICV-Terranis Oenoview), in order to analyze how these indices can help to establish management zone maps for dose reduction. For instance, we combined a map of vegetation acquired by VineView and the Optidose® model to obtain a dose recommendation map. Plant protection products saving was estimated at bunch closure stage between 10 to 29% according to the disease pressure and to the spatial dose adjustment scale.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Xavier Delpuech1,*, Adrien Vergès1, Anice Cheraiet2, Olivier Naud2, Sébastien Codis1

1 Institut Français de la Vigne et du vin (IFV), Montpellier, France.
2 ITAP, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France.

Contact the author

Keywords

Grapevine, spraying technologies, crop protection, precision agriculture.

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early and late acidification was evaluated

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.