Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 A new AI-based system for early and accurate vineyard yield forecasting

A new AI-based system for early and accurate vineyard yield forecasting

Abstract

Vineyard yield forecasting is a key issue for vintage scheduling and optimization of winemaking operations. High errors in yield forecasting can be found in the wine industry, mainly due to the high spatial variability in vineyards, strong dependency on historical yield data, insufficient use of agroclimatic data and inadequate sampling methods. Today, errors can reach values within the range of 20%-30% per block. Thus, improved methodologies for early and accurate vineyard yield forecasting are needed. We proposed a new system for vineyard yield forecasting that integrates: systematic cluster counting, sampling and weight measurement; key agroclimatic parameters; vineyards spatial variability and the use of forecasting models based on artificial intelligence (AI). We carried out trials in high yield Cabernet Sauvignon (CS) vineyards located in Maule Valley (Chile), during seasons 2019 and 2020. We covered 13 blocks (66 ha) and two trellis systems (pergola and free-cordon). We characterized the spatial variability of blocks using Sentinel 2 images and NDVI analysis. We defined sampling units based on NDVI levels and we counted and sampled grape clusters and measured their weights during fruit-set and veraison. Key agroclimatic data were taken from public databases and we collected yield historical data from 2017 onwards. We trained and applied machine-learning models based on MARS, Random Forest and SVR algorithms. For the 2020 trial, in veraison, we obtained an average error of 7.6% per block against a 10.1% given by the traditional method (error is 23.5% for all the CS grapes of the company). Time dedicated to counting and sampling was significantly lower. As a result, we obtained a cost-efficient, early and accurate new system for vineyard yield forecasting.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Cuevas-Valenzuela, José1*; Caris-Maldonado, Carlos1; Reyes-Suárez, José Antonio2; González-Rojas, Álvaro1

1 Center for Research and Innovation (CRI) Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Maule, Chile
2 Bioinformatics Department, Faculty of Engineering, Universidad de Talca, Campus Lircay, Talca, Maule, Chile

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Increasing microalgae biomass feedstock by valorizing wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU Green Deal aims t0 achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050. The deal strongly encourages GHG reducing measures at local, national and European levels. The REDWine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq. emissions produced in the winery industry value chain by utilizing biogenic fermentation CO2 for microalgae biomass production

Hydroxycinnamic acids in grapes and wines made of Tannat, Marselan and Syrah from Uruguay

Background: hydroxycinnamic acids (HCA), present in pulp and skin of grapes, are relevant compounds in red winemaking

La perception des terroirs du vignoble des Coteaux du Layon

On peut être surpris de l’existence d’un vignoble de vins liquoreux, le vignoble des Coteaux du Layon, dans une zone septentrionale à la limite Nord de la culture de qualité de la vigne et ce d’autant plus que le cépage de ce vignoble, le Chenin ou Pineau de la Loire, est un cépage semi tardif. La première explication est à rechercher au niveau des facteurs naturels (données climatiques et géopédologiques) permettant la réalisation de ce type de produit. Il est nécessaire de souligner ici l’importance de chaque paramètre du terroir pris dans im sens large (géopédologique et climatique) et que toute variation de l’un d’entre eux, même non perceptible en première analyse à l’homme, peut avoir des incidences déterminantes sur la qualité des vins.

Utilization of remote sensing technology to detect riesling vineyard variability

ineyard blocks can vary spatially with respect to several viticulturally significant qualities such as soil variables, vine vigor, vine physiology

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.