Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Abstract

Wine is a luxury product and a global beverage steeped in history and mystery. Over time, various regions have become renowned for the quality of wines they produce, which adds considerable value to the regions and the brands. On the whole, the international wine market is worth many hundreds of billions of dollars, which attracts unscrupulous operators intent on defrauding wine consumers. Countering such fraudulent activities requires the means to test and classify wine, but the task is considerable due to the complexity of wine. However, just as wine origin influences chemical and sensory profiles, indicators of wine provenance are naturally embedded in the chemical composition of wine. A range of methods of varying intricacy are available to analyse wine for authentication of variety or geographical origin. Instruments and techniques within the domain of research laboratories are not so practical or deployable in winery or supply chain settings, however. This is where spectroscopic methods are attractive, as they can be rapid, cost-effective and simple. In the search for such a method, we identified fluorescence spectroscopy, and more specifically, the collection of an excitation-emission matrix (EEM) that acts like a molecular fingerprint. Multivariate statistical modelling is then used in conjunction with the EEM data to develop classification models for wines from various regions. We have developed such a technique, using a relatively new type of machine learning algorithm known as extreme gradient boosting discriminant analysis. This unique approach, which can routinely achieve a level of accuracy of 100% in comparison to ICP-MS at an average of 85%, is being applied to a range of studies on Shiraz and Cabernet Sauvignon wines from different regions of Australia.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Ranaweera K.R. Ranaweera1, Adam M. Gilmore2, Dimitra L. Capone1,3, Susan E.P. Bastian1,3, David W. Jeffery1,3*

1Department of Wine Science and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
2HORIBA Instruments Inc., 20 Knightsbridge Rd., Piscataway, NJ 08854, United States
3Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Black foot disease in South African vineyards and grapevine nurseries

Over the last few years a drastic reduction has been noted in the survival rate of vine cuttings in nurseries, as well as in young vineyards in the Western Cape Province of South Africa. The low average take percentages of young vines can be attributed to several factors, including fungal, bacterial and viral diseases, insect and nematode pests,

The role of terroir in tourism led amenity migration: contrasting effects in Tuscany and the Okanagan valley of British Columbia

Definitions of terroir elude consistent agreement. As defined geographical space the common denominators of its conceptualization include natural and cultural elements of life