Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Fingerprinting as approach to unlock black box of taste

Fingerprinting as approach to unlock black box of taste

Abstract

The black box of taste is getting unlocked. The starting point is to distinguish taste from tasting. Consider taste as a product characteristic; tasting is a sensorial activity. Consequently, taste can be studied on a molecular level and therefore be assessed more objectively, whilst tasting is a human activity and by definition subjective.

 

P. Klosse (2004) developed a model to describe taste. This model has been further developed and tested in practice to analyse the taste profile of wines and beers. Mouthfeel sensations and their intensities are the key parameters of this model. Three classes of mouthfeel are distinguished: ‘contracting’, ‘coating’ and ‘drying’. The molecular compounds and the intensity of their contribution to mouthfeel have been identified, just like interaction effects. Newly developed instruments are used to measure the physico-chemical characteristics of these molecules. The individual scores of coating, contracting and drying elements of a sample give a ‘fingerprint’. A computer model calculates the coordinate that indicates the taste of the product.

 

This system has been successfully tested to classify wines and beers. Results indicate this approach gives useful insights in flavor composition. From a production perspective these insights can be used to enhance desired or suppress undesired compounds. The fingerprints allow an objective comparison of different wines. From a commercial perspective, producers can gather insights in consumer liking. In addition, the consumer gets more certainty that the purchased wine meets his expectations. Furthermore, the profile can be used in food pairing and as a basis for machine learning. The first web application of this approach has been introduced to the market.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Peter Klosse1, Boudewijn Klosse2, Georgios Agorastos3, Adam Dijkstra4 

1 The Academy for Scientific Taste Evaluation, T.A.S.T.E. foundation, Garstkampsestraat 11, 6611 KS Overasselt, The Netherlands
2 Tasters International, Amersfoortseweg 90, 7346AA Hoog Soeren, The Netherland
3 Faculty of Science and Engineering department, Maastricht University Campus Venlo, Maastricht University, 5911 AA Venlo, The Netherlands
4 Analysis Center De Colonjes, Bredeweg 2, 6562 DE Groesbeek, The Netherlands

Contact the author

Keywords

fingerprinting, mouthfeel model, classification, chemometrics, consumer preferences, taste

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Agronomic and qualitative effects of early leaf removal on cv.

Aim: The regulation of the vegetative-reproductive balance of a vineyard is a critical aspect for the quality of grapes. Early leaf removal, generally applied before the phenological stage of flowering, is mainly used as a technique to control yield and improve grape health, aimed at increasing the quality of the wine.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Applying artificial intelligence for improving grape yield estimation: A case study of wine and table grapes in South Africa

Accurate grape yield estimation is essential for effective vineyard management, crop planning, and resource allocation. Traditional methods often involve time-consuming and labour-intensive processes, which may introduce errors due to the large size and inherent spatial variability of the vineyard blocks.

Smartphone as a tool for deficit irrigation management in Vitis vinifera  

Vine water status is one of the most influential factors in grape vigor, yield, and quality (Ojeda et al., 2002; Guilpart et al., 2014). Severe water deficits during the first stage of crop development (bud break to fruit set) impact yield in the current year and the following year. While during grape ripening, water availability impacts berry size, grape composition, and health status. Therefore, a correct assessment of plant water status allows for proper water management with an impact on grape yield and composition (McClymont et al, 2012; Pereyra et al., 2022).

In-line sensing of grape juice press fractioning with UV-Vis spectroscopy

UV-Visible spectroscopy in conjunction with chemometrics, was successfully applied to objectively differentiate sparkling wine press juice fractions of Pinot noir. Two measurements methods were applied: reflectance using a fibre optic probe in-line and transmission using a benchtop spectrophotometer.