Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Fingerprinting as approach to unlock black box of taste

Fingerprinting as approach to unlock black box of taste

Abstract

The black box of taste is getting unlocked. The starting point is to distinguish taste from tasting. Consider taste as a product characteristic; tasting is a sensorial activity. Consequently, taste can be studied on a molecular level and therefore be assessed more objectively, whilst tasting is a human activity and by definition subjective.

 

P. Klosse (2004) developed a model to describe taste. This model has been further developed and tested in practice to analyse the taste profile of wines and beers. Mouthfeel sensations and their intensities are the key parameters of this model. Three classes of mouthfeel are distinguished: ‘contracting’, ‘coating’ and ‘drying’. The molecular compounds and the intensity of their contribution to mouthfeel have been identified, just like interaction effects. Newly developed instruments are used to measure the physico-chemical characteristics of these molecules. The individual scores of coating, contracting and drying elements of a sample give a ‘fingerprint’. A computer model calculates the coordinate that indicates the taste of the product.

 

This system has been successfully tested to classify wines and beers. Results indicate this approach gives useful insights in flavor composition. From a production perspective these insights can be used to enhance desired or suppress undesired compounds. The fingerprints allow an objective comparison of different wines. From a commercial perspective, producers can gather insights in consumer liking. In addition, the consumer gets more certainty that the purchased wine meets his expectations. Furthermore, the profile can be used in food pairing and as a basis for machine learning. The first web application of this approach has been introduced to the market.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Peter Klosse1, Boudewijn Klosse2, Georgios Agorastos3, Adam Dijkstra4 

1 The Academy for Scientific Taste Evaluation, T.A.S.T.E. foundation, Garstkampsestraat 11, 6611 KS Overasselt, The Netherlands
2 Tasters International, Amersfoortseweg 90, 7346AA Hoog Soeren, The Netherland
3 Faculty of Science and Engineering department, Maastricht University Campus Venlo, Maastricht University, 5911 AA Venlo, The Netherlands
4 Analysis Center De Colonjes, Bredeweg 2, 6562 DE Groesbeek, The Netherlands

Contact the author

Keywords

fingerprinting, mouthfeel model, classification, chemometrics, consumer preferences, taste

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Impact of yeast strain and aging time on the secondary metabolites, macromolecule composition, and sensory attributes of sparkling wines elaborated by the traditional method

The occurrence of aroma and macromolecule constituents in sparkling wines, directly influencing their organoleptic characteristics, is affected by several factors, including the grape cultivar, base-wine particularities, inoculated yeasts, the aging time, and winemaking practices [1].

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Preliminary studies on polyphenol assessment by Fourier transform-near infrared spectroscopy (FT-NIR) in grape berries

NIR spectroscopy has widely been tested in viticulture as powerful alternative to traditional analytical methods in the field of quality evaluation. NIR instruments have been used for assessing must and wine quality features in several works, but little information regarding their application on whole berries for polyphenol determination is available.