Macrowine 2021
IVES 9 IVES Conference Series 9 Screening of aroma metabolites within a set of 90 Saccharomyces strains

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Abstract

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored. Moreover, the genetic basis underlying the variation in the production of flavour-active metabolites within the Saccharomyces genus remains poorly understood. The main purpose of this project is to provide a better understanding of how the synthesis of these flavour-active compounds is modulated at genetic level, aiming to identify genes with specific functions in the metabolism of yeasts. This information will be obtained through the generation of novel hybrids between different Saccharomyces species and the use of quantitative genetics. In this context, the first step was to assess the phenotypic diversity at the scale of Saccharomyces genus, regarding traits of industrial interest. With this aim, 90 yeast strains of all the eight species which compose the Saccharomyces clade were screened for their fermentative capacities and the production of aromas and other compounds of interest (such as glycerol or succinate). Fermentations in oenological conditions were carried out at different temperatures, monitoring the kinetic profiles and analysing the production of the main fermentation metabolites (by HPLC) as well as the production of more than 40 aroma compounds (by GC-MS). The sporulation ability of the strains, necessary for the hybridization, was also assessed. Important differences were found in the kinetic and volatile profiles of the strains, and the whole dataset provides a comprehensive picture of the phenotypic diversity within the genus Saccharomyces. This information confirms the interest in further development of genetic approaches to identify the molecular basis underlying the studied traits and opens the door for their improvement.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Álvarez-Rafael, Sylvie DEQUIN, Edward J. LOUIS, Carole CAMARASA

UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France, UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France ,Centre of Genetic Architecture of Complex Traits, University of Leicester, Leicester, UK, UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France

Contact the author

Keywords

Alcoholic fermentation; genus saccharomyces; phenotypic diversity; fermentative volatile compounds

Citation

Related articles…

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.

Fungal communites diversity and functional roles of different types of Botrytis cinerea infected grape berries on different growing sites

Botrytis cinerea, an Ascomycota pathogen with a broad host range, infects over 1200 plant species. Grapes infected by this pathogen, which subsequently develop a noble rot, remain in the vineyard for an extended period, thus being exposed to a diverse array of physical, chemical and biological factors, which give rise to a complex microbial community.