Macrowine 2021
IVES 9 IVES Conference Series 9 Screening of aroma metabolites within a set of 90 Saccharomyces strains

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Abstract

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored. Moreover, the genetic basis underlying the variation in the production of flavour-active metabolites within the Saccharomyces genus remains poorly understood. The main purpose of this project is to provide a better understanding of how the synthesis of these flavour-active compounds is modulated at genetic level, aiming to identify genes with specific functions in the metabolism of yeasts. This information will be obtained through the generation of novel hybrids between different Saccharomyces species and the use of quantitative genetics. In this context, the first step was to assess the phenotypic diversity at the scale of Saccharomyces genus, regarding traits of industrial interest. With this aim, 90 yeast strains of all the eight species which compose the Saccharomyces clade were screened for their fermentative capacities and the production of aromas and other compounds of interest (such as glycerol or succinate). Fermentations in oenological conditions were carried out at different temperatures, monitoring the kinetic profiles and analysing the production of the main fermentation metabolites (by HPLC) as well as the production of more than 40 aroma compounds (by GC-MS). The sporulation ability of the strains, necessary for the hybridization, was also assessed. Important differences were found in the kinetic and volatile profiles of the strains, and the whole dataset provides a comprehensive picture of the phenotypic diversity within the genus Saccharomyces. This information confirms the interest in further development of genetic approaches to identify the molecular basis underlying the studied traits and opens the door for their improvement.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Álvarez-Rafael, Sylvie DEQUIN, Edward J. LOUIS, Carole CAMARASA

UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France, UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France ,Centre of Genetic Architecture of Complex Traits, University of Leicester, Leicester, UK, UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France

Contact the author

Keywords

Alcoholic fermentation; genus saccharomyces; phenotypic diversity; fermentative volatile compounds

Citation

Related articles…

Leaf vine content in nutrients and trace elements in La Mancha (Spain) soils: influence of the rootstock

The use of rootstock of American origin has been the classic method of fighting against Phylloxera for more than 100 years. For this reason, it is interesting to establish if different rootstock modifies nutrient composition as well as trace elements content that could be important for determining the traceability of the vine products. A survey of four classic rootstocks (110-Richter, SO4, FERCAL and 1103-Paulsen) and four new ones (M1, M2, M3 and M4) provided by Agromillora Iberia. S.L.U., all of them grafted with the Tempranillo variety, has been carried out during 2019. The eight rootstocks were planted in pots of 500 cc, on three soils with very different characteristics from Castilla-La Mancha (Spain). In the month of July, the leaves were collected and dried in a forced air oven for seven days at 40ºC. Then, the samples were prepared for the analysis determination, carried out by X-Ray fluorescence spectrometry. The results obtained showed that in the case of content in mineral elements in leaf, separated by soil type, we can report the importance of few elements such as Si, Fe, Pb and, especially, Sr. The rootstock does not influence the composition of the vine leaf for the studied elements that are the most important in determining the geochemical footprint of the soil. The influence of the soil can be discriminated according to some elements such as Fe, Pb, Si and, especially, Sr.

WHEY protein hydrolysates enhance grapevine resilience to abiotic and biotic stresses

Context and purpose of the study. The growing need for sustainable solutions in viticulture has led to increased interest in biostimulants that can enhance plant resilience to both abiotic and biotic stresses.

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.

Water status, nitrogen status and leaf area/ crop ratio effect on aromatic potential of vitis viniferaberries : example of Sauvignon blanc

Les effets de l’état hydrique et de l’alimentation en azote sur le potentiel aromatique des raisins de Sauvignon blanc ont été mesurés sur des vignobles du Bordelais. Les déficits hydriques ont été caractérisés par le potentiel tige déterminé en milieu de journée ΨTmin)­. L’alimentation en azote a été étudiée à partir d’une zone carencée en azote. Une part de cette zone a été supplémentée avec de l’azote minéral.

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.