Macrowine 2021
IVES 9 IVES Conference Series 9 Screening of aroma metabolites within a set of 90 Saccharomyces strains

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Abstract

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored. Moreover, the genetic basis underlying the variation in the production of flavour-active metabolites within the Saccharomyces genus remains poorly understood. The main purpose of this project is to provide a better understanding of how the synthesis of these flavour-active compounds is modulated at genetic level, aiming to identify genes with specific functions in the metabolism of yeasts. This information will be obtained through the generation of novel hybrids between different Saccharomyces species and the use of quantitative genetics. In this context, the first step was to assess the phenotypic diversity at the scale of Saccharomyces genus, regarding traits of industrial interest. With this aim, 90 yeast strains of all the eight species which compose the Saccharomyces clade were screened for their fermentative capacities and the production of aromas and other compounds of interest (such as glycerol or succinate). Fermentations in oenological conditions were carried out at different temperatures, monitoring the kinetic profiles and analysing the production of the main fermentation metabolites (by HPLC) as well as the production of more than 40 aroma compounds (by GC-MS). The sporulation ability of the strains, necessary for the hybridization, was also assessed. Important differences were found in the kinetic and volatile profiles of the strains, and the whole dataset provides a comprehensive picture of the phenotypic diversity within the genus Saccharomyces. This information confirms the interest in further development of genetic approaches to identify the molecular basis underlying the studied traits and opens the door for their improvement.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Álvarez-Rafael, Sylvie DEQUIN, Edward J. LOUIS, Carole CAMARASA

UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France, UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France ,Centre of Genetic Architecture of Complex Traits, University of Leicester, Leicester, UK, UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France

Contact the author

Keywords

Alcoholic fermentation; genus saccharomyces; phenotypic diversity; fermentative volatile compounds

Citation

Related articles…

Caratterizzazione varietale della CV. Vranac del Montenegro: primi risultati

Questo studio ha permesso di raccogliere alcune informazioni sul profilo chimico della cultivar Vranac coltivata in Montenegro. L’uva ha mostrato di raggiungere un buon accumulo zuccherino

Étude des relations sol-vigne sur le vignoble de Côte Rôtie

La topographie du vignoble de Côte Rôtie, la prédominance de la non culture ainsi que la structure très légère des sols amènent les vignerons à s’interroger sur l’entretien du sol, la conduite de la fertilisation de leurs parcelles ainsi que sur le développement racinaire de la vigne.

The role of ampelographic collection in genetic improvement of native varieties and the creation new varieties

The available plant diversity is maintained in global genetic collections and germplasm banks. One of the main objectives of the study of the genetic material of vine still conducting research to characterize the genotypes and the creation of new varieties. The main ampelographic collection of the country, the largest in the Balkans, is located at the Athens Vine Institute in Lykovrisi, Attica, in an area of 70 acres. It contains more than 800 varieties, most of which are indigenous. The Institute is conducting research on the genetic improvement of native varieties and the creation new winemaking and table grape varieties of high productivity, grape quality, resistance to fungal diseases and their adaptability to stresses using the hybridization method using European high-quality varieties.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.