Macrowine 2021
IVES 9 IVES Conference Series 9 Screening of aroma metabolites within a set of 90 Saccharomyces strains

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Abstract

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored. Moreover, the genetic basis underlying the variation in the production of flavour-active metabolites within the Saccharomyces genus remains poorly understood. The main purpose of this project is to provide a better understanding of how the synthesis of these flavour-active compounds is modulated at genetic level, aiming to identify genes with specific functions in the metabolism of yeasts. This information will be obtained through the generation of novel hybrids between different Saccharomyces species and the use of quantitative genetics. In this context, the first step was to assess the phenotypic diversity at the scale of Saccharomyces genus, regarding traits of industrial interest. With this aim, 90 yeast strains of all the eight species which compose the Saccharomyces clade were screened for their fermentative capacities and the production of aromas and other compounds of interest (such as glycerol or succinate). Fermentations in oenological conditions were carried out at different temperatures, monitoring the kinetic profiles and analysing the production of the main fermentation metabolites (by HPLC) as well as the production of more than 40 aroma compounds (by GC-MS). The sporulation ability of the strains, necessary for the hybridization, was also assessed. Important differences were found in the kinetic and volatile profiles of the strains, and the whole dataset provides a comprehensive picture of the phenotypic diversity within the genus Saccharomyces. This information confirms the interest in further development of genetic approaches to identify the molecular basis underlying the studied traits and opens the door for their improvement.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Álvarez-Rafael, Sylvie DEQUIN, Edward J. LOUIS, Carole CAMARASA

UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France, UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France ,Centre of Genetic Architecture of Complex Traits, University of Leicester, Leicester, UK, UMR 1083 Sciences Pour l’Oenologie, INRAE, Montpellier SupAgro, Montpellier, France

Contact the author

Keywords

Alcoholic fermentation; genus saccharomyces; phenotypic diversity; fermentative volatile compounds

Citation

Related articles…

Effects Of Injections Of Large Amounts Of Air During Fermentation

Aim: Evaluating the effects of high amount of air injection during red wine fermentation process, on phenolic extraction dynamics, oxygen dissolution, phenolic compounds evolution, and oxidation of red wines.MethodsRed grapes musts were fermented in 100.000 L stainless steel tank, equipped with Parsec SRL “Air mixing” gas injection systems. For this experiment, treatments with two injection regimes, high and low intensity, and high and low daily frequency, were used. Oxygen analyzer was introduced into the tank to evaluate the gas concentration evolution along the fermentation.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Studio preliminare sulla microzonazione Bioclimatica condotto in un’area viticola collinare

La caratterizzazione bioclimatica del territorio rappresenta un elemento sempre più impor­tante per il miglioramento dell’ attività agricola. La conoscenza degli andamenti assunti dai parametri meteorologici puà consentire di individuare le peculiarità dei singoli appezzamenti aziendali, ottimizzando le scelte sia in termini tattici (esecuzione dei più opportuni interventi colturali) che strategici (scelta delle specie o varietà più idonee a valorizzare ciascun am­biente).

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.