Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Abstract

Enhancing the sensory profile of wine by the use of different microorganism has been always a challenge in winemaking. The aim of our work was to evaluate the impact of different fermentation schemes by using mixed and pure cultures of different Saccharomyces species to Sauvignon blanc wine chemical composition and sensory profile. Sauvignon blanc must has been inoculated with mixed and pure cultures of S. pastorianus and S. cerevisiae. For the mixed fermentation schemes, one strain of S. pastorianus has been inoculated under different frequencies (99%, 95% , 90%, 80% and 70%) with two strains of S. cerevisiae. Totally 13 fermentations trials, 3 monocultures and 10 mixed cultures, were realised in triplicate. The fermentation kinetics has been controlled by density measurement and classic oenological analysis (residual sugars, total acidity, volatile acidity, malic acid degradation, glycerol production etc) were performed based on OIV protocols.The population dynamics was conducted by the specific interdelta PCR reaction of the Saccharomyces species in the beginning and in the end of the fermentation process. Volatile aromatic compounds such as esters, superior alcohols and thiols were evaluated by GC/MS analysis. Sensory assesement was carried out for all wines by trained panel. All fermentation trials lead to dryness and the fermentation lasted from 9 days to 13 days. The population dynamics analysis revealed that the S. cerevisiae strain was the most predominant in the end of the fermentation process in any inoculation ratio tested. The wines fermented with S. pastorianus, either in pure or mixed cultures, were characterised by significant lower acetic acid production and greater malic acid degradation compared to the wines fermented with S. cerevisiae strains. The aromatic profile of the produced wines was highly affected from the inoculation ratio while the effect of the S. cerevisiae used strain was less important. Our study based on different fermentation frequencies of mixed cultures of S. pastorianus and S. cerevisiae strains, revealed the impact of the inoculation ratio on the 30 tested volatiles compounds, correlated to Sauvignon blanc aromatic profile. The species of S. pastorianus starts to become an interesting candidate for co-inoculation with S. cerevisae strains, able to boost varietal aromas intensity.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Dimopoulou, Elli GOULIOTI, Vicky TROIANOU, Chrisavgi TOUMPEKi, Yves GOSSELIN, Etienne DORIGNAC, Nikolaos KONTOUDAKIS, Yorgos KOTSERIDIS

Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Innovino Research & Development, Meg. Alexandrou 21, Pallini 15351, Greece, Innovino Research & Development, Meg. Alexandrou 21, Pallini 15351, Greece, Fermentis 137 rue Gabriel Péri, 59703 Marcq en Baroeul, France, Fermentis 137 rue Gabriel Péri, 59703 Marcq en Baroeul, France, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

Contact the author

Keywords

Saccharomyces bayanus, mixed cultures, species interaction, Sauvignon blanc, varietal aromas

Citation

Related articles…

Tolerance to sunburn: a variable to consider in the context of climate change

Climate change effects on grapevine phenology and grape primary and secondary metabolites are well described in recent literature. Increasing frequency and intensity of heat waves may be responsible for important yield losses in the future. However, the impact of this event is not so well described in literature. The present study highlights the importance of grape variety tolerance as a mitigation tool to climate change.

Microbial resources for improving the sustainability in oenology

Sulphur dioxide has long been considered an irreplaceable additive due to its numerous significant positive effects during winemaking and beyond.

Water and physiological response to early leaf removal of cv. Verdejo in rainfed conditions, at different times of the day, in the D.O. Rueda (Spain)

Aim: Early leaf removal, generally applied before flowering, is mostly conceived as a technique to control grape yield and improve the health of grapes and focused on the final objective of increasing wine quality.

Novel table grape varieties as “ready-to-eat” products

Consumers are increasingly requesting ready-to-eat products, which are time-saving and convenient. Offering ready-to-eat fruits and vegetables represents a quick and easy way for any consumer to add healthy products to their diet. In this study, we evaluated the aptitude of several table grape varieties to be included in the processing and packaging lines of ready-to-eat products. The following work was based on the characterization of genetic materials and varietal innovation.

Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Downy mildew, caused by the oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is one of the most destructive grapevine diseases mostly affecting Vitis vinifera L. and impacting on viticulture. The pathogen invasion can induce in grapevine multiple defense reactions, first PAMP-Triggered Immunity and secondly Effector-Triggered Immunity. Plasmopara viticola can overcome these defense mechanisms through the secretion of effectors, such as RxLR, into the plant cells, making it easier for the oomycete to infect grapevines. Currently, the use of chemical pesticides remains the most effective way to control the pathogen with severe negative side effects on the environment and animal health.