Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Abstract

Enhancing the sensory profile of wine by the use of different microorganism has been always a challenge in winemaking. The aim of our work was to evaluate the impact of different fermentation schemes by using mixed and pure cultures of different Saccharomyces species to Sauvignon blanc wine chemical composition and sensory profile. Sauvignon blanc must has been inoculated with mixed and pure cultures of S. pastorianus and S. cerevisiae. For the mixed fermentation schemes, one strain of S. pastorianus has been inoculated under different frequencies (99%, 95% , 90%, 80% and 70%) with two strains of S. cerevisiae. Totally 13 fermentations trials, 3 monocultures and 10 mixed cultures, were realised in triplicate. The fermentation kinetics has been controlled by density measurement and classic oenological analysis (residual sugars, total acidity, volatile acidity, malic acid degradation, glycerol production etc) were performed based on OIV protocols.The population dynamics was conducted by the specific interdelta PCR reaction of the Saccharomyces species in the beginning and in the end of the fermentation process. Volatile aromatic compounds such as esters, superior alcohols and thiols were evaluated by GC/MS analysis. Sensory assesement was carried out for all wines by trained panel. All fermentation trials lead to dryness and the fermentation lasted from 9 days to 13 days. The population dynamics analysis revealed that the S. cerevisiae strain was the most predominant in the end of the fermentation process in any inoculation ratio tested. The wines fermented with S. pastorianus, either in pure or mixed cultures, were characterised by significant lower acetic acid production and greater malic acid degradation compared to the wines fermented with S. cerevisiae strains. The aromatic profile of the produced wines was highly affected from the inoculation ratio while the effect of the S. cerevisiae used strain was less important. Our study based on different fermentation frequencies of mixed cultures of S. pastorianus and S. cerevisiae strains, revealed the impact of the inoculation ratio on the 30 tested volatiles compounds, correlated to Sauvignon blanc aromatic profile. The species of S. pastorianus starts to become an interesting candidate for co-inoculation with S. cerevisae strains, able to boost varietal aromas intensity.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Dimopoulou, Elli GOULIOTI, Vicky TROIANOU, Chrisavgi TOUMPEKi, Yves GOSSELIN, Etienne DORIGNAC, Nikolaos KONTOUDAKIS, Yorgos KOTSERIDIS

Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Innovino Research & Development, Meg. Alexandrou 21, Pallini 15351, Greece, Innovino Research & Development, Meg. Alexandrou 21, Pallini 15351, Greece, Fermentis 137 rue Gabriel Péri, 59703 Marcq en Baroeul, France, Fermentis 137 rue Gabriel Péri, 59703 Marcq en Baroeul, France, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

Contact the author

Keywords

Saccharomyces bayanus, mixed cultures, species interaction, Sauvignon blanc, varietal aromas

Citation

Related articles…

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Analysis of climatic changes in different areas of Abruzzo region (Central Italy): implications for grape growing

The dynamic evolution of some bioclimatic indices largely used to define the vocation of areas to grape growing was assessed over 43 years (1965-2007) in four sites of the Abruzzo Region (Central Italy).

Intra-block variations of vine water status in time and space

Vine water status was measured on 96 plots of three vines inside a vineyard block of 0.28 ha during three years: 2003, 2004 and 2005. Three physiological indicators were implemented: stem water potential, carbon isotope discrimination measured on grape sugars at ripeness (δ13C) and canopy temperature measured by high resolution remote sensing. For stem water potential, measurements were taken on every single vine of each plot.

Reviewing the geometry of terraces in the Douro region towards sustainable viticulture

The Douro demarcated region constitutes just over 50% of the area of mountain vineyard in the world, i.e., vineyards with slope gradients of 30% or above. Among the different (terraced) vineyard layouts, the formerly preferred wider terraces supporting two rows of vines and the currently advocated narrower single vine row, dominate the vineyards’ planting layout. The slope of these terraces, in other words, the supporting earth ramp, is a key element in these vineyards’ construction.

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine.