Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Abstract

Enhancing the sensory profile of wine by the use of different microorganism has been always a challenge in winemaking. The aim of our work was to evaluate the impact of different fermentation schemes by using mixed and pure cultures of different Saccharomyces species to Sauvignon blanc wine chemical composition and sensory profile. Sauvignon blanc must has been inoculated with mixed and pure cultures of S. pastorianus and S. cerevisiae. For the mixed fermentation schemes, one strain of S. pastorianus has been inoculated under different frequencies (99%, 95% , 90%, 80% and 70%) with two strains of S. cerevisiae. Totally 13 fermentations trials, 3 monocultures and 10 mixed cultures, were realised in triplicate. The fermentation kinetics has been controlled by density measurement and classic oenological analysis (residual sugars, total acidity, volatile acidity, malic acid degradation, glycerol production etc) were performed based on OIV protocols.The population dynamics was conducted by the specific interdelta PCR reaction of the Saccharomyces species in the beginning and in the end of the fermentation process. Volatile aromatic compounds such as esters, superior alcohols and thiols were evaluated by GC/MS analysis. Sensory assesement was carried out for all wines by trained panel. All fermentation trials lead to dryness and the fermentation lasted from 9 days to 13 days. The population dynamics analysis revealed that the S. cerevisiae strain was the most predominant in the end of the fermentation process in any inoculation ratio tested. The wines fermented with S. pastorianus, either in pure or mixed cultures, were characterised by significant lower acetic acid production and greater malic acid degradation compared to the wines fermented with S. cerevisiae strains. The aromatic profile of the produced wines was highly affected from the inoculation ratio while the effect of the S. cerevisiae used strain was less important. Our study based on different fermentation frequencies of mixed cultures of S. pastorianus and S. cerevisiae strains, revealed the impact of the inoculation ratio on the 30 tested volatiles compounds, correlated to Sauvignon blanc aromatic profile. The species of S. pastorianus starts to become an interesting candidate for co-inoculation with S. cerevisae strains, able to boost varietal aromas intensity.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Dimopoulou, Elli GOULIOTI, Vicky TROIANOU, Chrisavgi TOUMPEKi, Yves GOSSELIN, Etienne DORIGNAC, Nikolaos KONTOUDAKIS, Yorgos KOTSERIDIS

Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Innovino Research & Development, Meg. Alexandrou 21, Pallini 15351, Greece, Innovino Research & Development, Meg. Alexandrou 21, Pallini 15351, Greece, Fermentis 137 rue Gabriel Péri, 59703 Marcq en Baroeul, France, Fermentis 137 rue Gabriel Péri, 59703 Marcq en Baroeul, France, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Oenology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

Contact the author

Keywords

Saccharomyces bayanus, mixed cultures, species interaction, Sauvignon blanc, varietal aromas

Citation

Related articles…

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.

Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Environmental factors like soil and climate influence grape quality potential. Their impact is often mediated through vine water and nitrogen status. Depending on the color of the grapes (red or white) and the type of wine produced, the desired level of vine water and nitrogen status for optimum wine quality is different. Little investigation has been carried out concerning these factors and their potential influence on sparkling wine quality on two vintages. In this study vine water and nitrogen status were assessed at a very high density and related to grape composition and berry weight. Through statistical analyses, the major factors driving grape quality potential on Pinot noir in Champagne were highlighted.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.

Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Polyphenols are important compounds involved in many chemical and sensory wine features. In winemaking, adding oenological tannins claims to have positive impacts on wine stability, protection from oxidation and aroma persistence. Polyphenols are antioxidant compounds by either scavenging reactive oxygen and nitrogen species or chelating Fe2+ ions (1). However, as tannins oxidation leads to the formation of highly reactive species (i.e. ortho-quinones), it is still unclear if they have an effective role toward oxidation of wine aromas (2). In this work, we aim at studying the effect of two commercial tannins (proanthocyanidins, ellagitannins) on red wine flavour (mainly aroma) before and after air exposition.