Macrowine 2021
IVES 9 IVES Conference Series 9 Lamp – a modern tool for the detection of fungal infections in the vineyard

Lamp – a modern tool for the detection of fungal infections in the vineyard

Abstract

AIM: Loop-mediated isothermal amplification (LAMP) [1] is a modern technology for fast and sensitive amplification of specific DNA sequences under isothermal conditions. Its simple handling and no need for dedicated equipment together with an evaluation of the amplification event by in-tube detection make this method advantageous and economically affordable for on-site investigations in the industry. In this study, the applicability of such assays for the detection of fungal infections in grape, soil, and must samples was tested and optimized.

METHODS: 88 grape, 42 soil, and 15 must samples from different vineyards in Europe collected during the harvest 2020 were tested with LAMP assays optimized for the specific detection of Botrytis (B.) cinerea [2] responsible for Botrytis bunch rot, the gushing-inducing fungus Penicillium (P.) oxalicum [3], and with a newly developed LAMP assay for the detection of the mycotoxin-producing and gushing-inducing fungus P. expansum [4,5].

RESULTS: The optimized LAMP assay for the detection of B. cinerea revealed positive samples in all tested vineyards. For P. oxalicum, 6% of grape samples showed positive results while soil and must were tested negative. P. expansum was only found in Germany with 28% of grape, 10% of soil, and 13% of must samples revealing positive results.

CONCLUSIONS:

The application of LAMP assays for the detection of fungal infections prior to the occurrence of visual mold symptoms by testing samples from vineyards is particularly beneficial. A specific and sensitive detection can be performed within 60 minutes of incubation and results can be monitored by naked eye inspection at day light. A simple sample preparation and the use of simple equipment like a water bath make LAMP a powerful tool for on-site investigations in the winemaking industry. SUPPORT: AiF 19952 N.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Lisa M. Frisch, Magdalena A. MANN, y Rudi F. VOGEL,  Ludwig NIESSEN

Technical University of Munich, Germany

Contact the author

Keywords

loop-mediated isothermal amplification (lamp), diagnosis, fungal infection, champagne gushing, on-site investigation

Citation

Related articles…

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.

Population-wide diversity study in Lachancea thermotolerans highlights superior starters for winemaking

Grapes from warm(ing) climates often contain excessive sugars but lack acidity. This can lead to highly alcoholic wines with compromised stability and balance. The yeast Lachancea thermotolerans can ameliorate such wines due to its metabolic peculiarity – partial fermentation of sugars to lactic acid. This study aimed to elucidate the population-wide diversity in L. thermotolerans, whilst selecting superior strains for wine sector. An extensive collection of isolates (~200) sourced from different habitats worldwide was first genotyped on 14 microsatellite loci. This revealed differentiation of L. thermotolerans genetic groups based on the isolation substrate and geography. The 94 genotyped strains were then characterised in Vitis vinifera cv. Chardonnay fermentations.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Contribution of grape seeds to evolution of acetaldehyde, pigments and tannins reactive towards salivary proteins of red wine over time

This study investigated the impact of the gsk/gse ratio on the evolution of acetaldehyde and of major phenolic compounds of aglianico wine in wine like solution and real wine. Four model solutions and the correspondant control wines were prepared. The natural weight ratio between grape skins and seeds was determined on the real grapes, and a control wine was obtained from those.