Macrowine 2021
IVES 9 IVES Conference Series 9 Lamp – a modern tool for the detection of fungal infections in the vineyard

Lamp – a modern tool for the detection of fungal infections in the vineyard

Abstract

AIM: Loop-mediated isothermal amplification (LAMP) [1] is a modern technology for fast and sensitive amplification of specific DNA sequences under isothermal conditions. Its simple handling and no need for dedicated equipment together with an evaluation of the amplification event by in-tube detection make this method advantageous and economically affordable for on-site investigations in the industry. In this study, the applicability of such assays for the detection of fungal infections in grape, soil, and must samples was tested and optimized.

METHODS: 88 grape, 42 soil, and 15 must samples from different vineyards in Europe collected during the harvest 2020 were tested with LAMP assays optimized for the specific detection of Botrytis (B.) cinerea [2] responsible for Botrytis bunch rot, the gushing-inducing fungus Penicillium (P.) oxalicum [3], and with a newly developed LAMP assay for the detection of the mycotoxin-producing and gushing-inducing fungus P. expansum [4,5].

RESULTS: The optimized LAMP assay for the detection of B. cinerea revealed positive samples in all tested vineyards. For P. oxalicum, 6% of grape samples showed positive results while soil and must were tested negative. P. expansum was only found in Germany with 28% of grape, 10% of soil, and 13% of must samples revealing positive results.

CONCLUSIONS:

The application of LAMP assays for the detection of fungal infections prior to the occurrence of visual mold symptoms by testing samples from vineyards is particularly beneficial. A specific and sensitive detection can be performed within 60 minutes of incubation and results can be monitored by naked eye inspection at day light. A simple sample preparation and the use of simple equipment like a water bath make LAMP a powerful tool for on-site investigations in the winemaking industry. SUPPORT: AiF 19952 N.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Lisa M. Frisch, Magdalena A. MANN, y Rudi F. VOGEL,  Ludwig NIESSEN

Technical University of Munich, Germany

Contact the author

Keywords

loop-mediated isothermal amplification (lamp), diagnosis, fungal infection, champagne gushing, on-site investigation

Citation

Related articles…

Terroirs and legal protection

Le concept AOC permet, par une délimitation précise, la mise en valeur de terroirs particulièrement adaptés à la viticulture. Seuls les terroirs ainsi identifiés peuvent produire des vins portant le nom de l’AOC. Le nom de cette AOC ne peut être utilisé que pour des vins issus de terroirs compris dans l’aire d’appellation, sous peine de sanctions pénales. La délimitation ainsi opérée participe à la protection du nom de l’AOC. A l’inverse, le terroir délimité n’est pas protégé.

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.

Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Many of the world’s vineyard regions are located in regions of complex terrain, with the result there is significant local climate variation.

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.