Macrowine 2021
IVES 9 IVES Conference Series 9 Expanding the biotechnological potential of M. pulcherrima/fructicola clade for wine-related applications

Expanding the biotechnological potential of M. pulcherrima/fructicola clade for wine-related applications


AIM: Strains belonging to M. pulcherrima/fructicola clade are frequently isolated from flowers, fruits and grape musts, and exhibit a broad spectrum of enzymatic activities and antimicrobial potential (Morata et al., 2019; Sipiczki, 2020; Vicente et al. 2020). By reason of these features, selected strains of this clade have been proposed as non-Saccharomyces starter cultures for winemaking. In this study, with a view to valorise the biotechnological potential of these strains, a new Metschnikowia sp. strain, DBT012, was selected for application in vinification trials of Valpolicella’s fresh and withered typical grapes for reduction of SO2addition and increase of aromatic complexity. Further, in the framework of the investigation on the biodiversity of a collection of strains, distinct pulcherrimin-producing isolates from spontaneous fermentation and grapes were putatively recognized as Metschnikowia spp. and selected for genotypic and phenotypic characterisation.

METHODS: Lyophilised cultures of the reference strain DBT012 were tested in pilot-scale vinifications (mixed-cultures with S. cerevisiae). The isolates were characterised based on enzymatic activities (e.g., sulphite-reductase and beta-glucosidase activities) and growth under different wine-related stress conditions (e.g., ethanol, high sugar content). Genetic fingerprinting techniques (e.g., (GTG)5 and microsatellite) were performed for de-replication of isolates and strain typing. Whole-genome sequencing of the reference strain was carried out to analyse the correlation between genotype and phenotype, and comparative analyses with available type strains were performed to deepen the taxonomic aspects and molecularly identify this strain.

RESULTS: Use of Metschnikowia sp. DBT012 reduced the acetaldehyde content in wines, and positively influenced the wine aroma. About 50 Metschnikowia strains were characterised, which displayed a significant phenotypic diversity in terms of β-glucosidase and esterase activities, H2S production and growth at high sugar concentrations. The relationship of those features with genotypic and genomic distinctiveness of the reference strain was highlighted.


The well-characterised thematic collection of strains belonging to M. pulcherrima/fructicola clade presented here constitutes an important reservoir of biodiversity for applications in different wine-related scenarios.


Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article


Eleonora Troiano,Renato, LEAL BINATI, Ilaria, CHECCHIA, Ilaria, LARINI, Veronica, GATTO, Gianluca, VENERI, Giacomo, ZAPPAROLI, Vittorio, CAPOZZI, Elisa, SALVETTI, Sandra, TORRIANI, Giovanna, E., FELIS

Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy , Department of Biotechnology, University of Verona, Italy, Institute of Sciences of Food Production, National Research Council (CNR), Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy

Contact the author


metschnikowia, wine microbiology, biodiversity, biotechnological potential


Related articles…

Methodological approach to zoning

An appellation or geographic indication should be based on the terroir concept in order to ensure its integrity. The delimitation of viticultural terroirs must include two consecutive or parallel steps, namely (a) the characterisation of the environment and identification of homogenous environmental units (basic terroir units, natural terroir units) taking all natural factors into account, as well as (b) the characterisation of the viticultural and oenological potential of these units over time.

Effect of scion-rootstock combinations on the performance of a near-infrared (NIR) spectroscopy method for determining vine water status

In the context of sustainable viticulture, modern and efficient techniques to determine water status are required to optimize irrigation practices. Proximal techniques such as thermography and spectroscopy have shown promising results. When these techniques are incorporated into mobile systems is possible to evaluate the water status on-the-go, offering the possibility to generate variability maps. However, in most cases, complex protocols of data acquisition and analysis are required. Also, the inherent physiological behaviour of the plants under certain water stress conditions needs to be considered. Therefore, the aim of this study was to evaluate the effect of scion-rootstock combinations on the performance of a predefined plant-based method based on proximal near-infrared (NIR) spectroscopy.

Relationships between the Fregoni bioclimatic index (IF) and wine quality

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C.

Stability of 3-mercaptohexanol during white wine storage in relationship to must pre-fermentative fining

3-Mercaptohexanol (3MH) is a volatile thiol occurring in several white and red wines, where it can contribute to fruity attributes. Its content is typically high in wines from certain grape varieties, in particular Sauvignon blanc, where it is considered a varietal marker. The strong nucleophilic character of thiols makes 3MH rather unstable during wine storage, due to the presence of several strong electrophilic species. Among these electrophilics, those arising from the oxidation of flavan3-ols such as catechin and epi-catechin have been indicated as critical for 3MH stability. Accordingly, there is a generalized interest towards the ability of vinification practices to reduce 3MH loss during aging through the management of wine flavan-3-ols content.

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.