Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Abstract

Moschofilero is a native grape variety, classified as a ‘gris’ type variety, that is cultivated in PDO Mantineia, Peloponissos, Greece. It is used for the production of both white and rosé wines. Due to high altitude of the vineyards, the harvest is done by mid October, and many vintages are characterised by high acidities and low pH values. Besides that, Moschofilero wines record usually low alcohol levels and thus these wines lack body and generally are considered to be ‘medium’ to ‘low’ body wines. The aim of our work was on one hand to evaluate the impact of three different O. oeni strains, to qualitative characteristics of Moschofilero white and rose wine and to check if MLF boosts the mouthfeel of the wines. Laboratory scale alcoholic fermentation (AF) monitoring was performed every day by density measurements, while malic acid degradation was measured with the RQflex reflectometer. Two different S. cerevisiae strains were used to perform AF and three commercial strains of O. oeni for MLF. Classical wine analyses (acidity, sulfite, residual sugars) and organic acid composition (tartaric, malic, citric, lactic, succinic and acetic acid) were performed in all wines after MLF. Fermentative volatile compounds (esters and superior alcohols) were determined by SPME followed by GC–MS and diacetyl concentration was analysed by GC-ECD. All produced wines were evaluated sensorially. All O. oeni strains could perform MLF and degrade the malic acid (2.5 g/L) but had a different effect on wine composition. The major variation was observed for the acetic acid (0.25 g/L, 0.35 g/L and 0.45 g/L respectively for the three strains) as also for the diacetyl production (max 1.5±0.5 mg/L). The volatile compounds levels were found to be slightly different in the produced wines and strain effect was observed for both, bacterial and yeast species. The effect of malolactic fermentation to Moschofilero white and rosé wines depends on the bacterial strains as well as the yeast strain used for alcoholic fermentation. MLF can lead to decreased grassy character, boost the fruity notes and improve the wine mouthfeel, depending on the strain used.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kotseridis Yorgos, Maria Dimopoulou, Marilena Panagopoulou, Vicky Tροιανοu, Niki Proχenia

Laboratory of Enology and Alcoholic Drinks (Lead), Agricultural University of Athens, Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece.
Laboratory of Enology & Alcoholic Drinks (Lead), Agricultural University of Athens, Athens, Greece.
Innovino, Research & Development, Pallini, Greece.
Laboratory of Enology & Alcoholic Drinks (Lead), Agricultural University of Athens, Athens, Greece.

Contact the author

Keywords

malolactic fermentation, moschofilero, lactic acid bacteria, o. oeni, mouthfeel

Citation

Related articles…

Influence of the “terroir” (soil, climate and wine grower) on the quality of red Grenache wines in the Rhône Valley

«L’Observatoire Grenache» est un réseau de parcelles qui a été mis en place par l’Institut Rhodanien en Vallée du Rhône sur les millésimes de 1995 à 1999. Composé de 24 parcelles de Vitis vinifera L. cv Grenache noir, ce réseau vise à étudier l’influence du terroir (sol, climat et vigneron) sur la qualité des vins. Les parcelles ont été choisies afin de représenter différentes situations géographiques et géopédologiques de la vallée du Rhône. Le matériel végétal (clone, porte-greffe), la taille (cordon de Royat), la densité et l’âge de la parcelle ont été encadrées. Ainsi les conditions de milieu (sol, climat) et les pratiques du vigneron étaient les principales sources de variations.

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Two transmittance-based chlorophyll meters (SPAD-502 and CCM-200) were evaluated in estimating chlorophyll (Chl) and nitrogen (N) levels in grapevine leaves.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Geoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.