Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Abstract

Moschofilero is a native grape variety, classified as a ‘gris’ type variety, that is cultivated in PDO Mantineia, Peloponissos, Greece. It is used for the production of both white and rosé wines. Due to high altitude of the vineyards, the harvest is done by mid October, and many vintages are characterised by high acidities and low pH values. Besides that, Moschofilero wines record usually low alcohol levels and thus these wines lack body and generally are considered to be ‘medium’ to ‘low’ body wines. The aim of our work was on one hand to evaluate the impact of three different O. oeni strains, to qualitative characteristics of Moschofilero white and rose wine and to check if MLF boosts the mouthfeel of the wines. Laboratory scale alcoholic fermentation (AF) monitoring was performed every day by density measurements, while malic acid degradation was measured with the RQflex reflectometer. Two different S. cerevisiae strains were used to perform AF and three commercial strains of O. oeni for MLF. Classical wine analyses (acidity, sulfite, residual sugars) and organic acid composition (tartaric, malic, citric, lactic, succinic and acetic acid) were performed in all wines after MLF. Fermentative volatile compounds (esters and superior alcohols) were determined by SPME followed by GC–MS and diacetyl concentration was analysed by GC-ECD. All produced wines were evaluated sensorially. All O. oeni strains could perform MLF and degrade the malic acid (2.5 g/L) but had a different effect on wine composition. The major variation was observed for the acetic acid (0.25 g/L, 0.35 g/L and 0.45 g/L respectively for the three strains) as also for the diacetyl production (max 1.5±0.5 mg/L). The volatile compounds levels were found to be slightly different in the produced wines and strain effect was observed for both, bacterial and yeast species. The effect of malolactic fermentation to Moschofilero white and rosé wines depends on the bacterial strains as well as the yeast strain used for alcoholic fermentation. MLF can lead to decreased grassy character, boost the fruity notes and improve the wine mouthfeel, depending on the strain used.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kotseridis Yorgos, Maria Dimopoulou, Marilena Panagopoulou, Vicky Tροιανοu, Niki Proχenia

Laboratory of Enology and Alcoholic Drinks (Lead), Agricultural University of Athens, Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece.
Laboratory of Enology & Alcoholic Drinks (Lead), Agricultural University of Athens, Athens, Greece.
Innovino, Research & Development, Pallini, Greece.
Laboratory of Enology & Alcoholic Drinks (Lead), Agricultural University of Athens, Athens, Greece.

Contact the author

Keywords

malolactic fermentation, moschofilero, lactic acid bacteria, o. oeni, mouthfeel

Citation

Related articles…

Understanding provenance and terroir in Australian Pinot noir

Aims: This study aimed to (1) characterise colour and phenolic profiles of commercial Australian Pinot noir wines, (2) understand regional drivers of sensory and volatile profiles of commercial Australian Pinot noir wines, and (3) generate a deeper understanding of where Australian Pinot noir wines profiles sit in an international context.

Effects of grapevine mycorrhizal association on fine root dynamics depend on rootstock genotype

Context and Purpose of the study. Arbuscular mycorrhizal fungi (AMF) symbiosis with grapevines is a key component of vineyard ecosystems.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).

Exploring non-Saccharomyces wine yeasts native from Castilla-La Mancha (Spain) to enhance bioprotection and quality of wines

The current tendency to reduce SO2 in winemaking, due to its adverse effects in sensitive individuals [1], has led to the development of new techniques to mitigate SO2 absence and to exert the same antimicrobial and antioxidant effects.