Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Abstract

Moschofilero is a native grape variety, classified as a ‘gris’ type variety, that is cultivated in PDO Mantineia, Peloponissos, Greece. It is used for the production of both white and rosé wines. Due to high altitude of the vineyards, the harvest is done by mid October, and many vintages are characterised by high acidities and low pH values. Besides that, Moschofilero wines record usually low alcohol levels and thus these wines lack body and generally are considered to be ‘medium’ to ‘low’ body wines. The aim of our work was on one hand to evaluate the impact of three different O. oeni strains, to qualitative characteristics of Moschofilero white and rose wine and to check if MLF boosts the mouthfeel of the wines. Laboratory scale alcoholic fermentation (AF) monitoring was performed every day by density measurements, while malic acid degradation was measured with the RQflex reflectometer. Two different S. cerevisiae strains were used to perform AF and three commercial strains of O. oeni for MLF. Classical wine analyses (acidity, sulfite, residual sugars) and organic acid composition (tartaric, malic, citric, lactic, succinic and acetic acid) were performed in all wines after MLF. Fermentative volatile compounds (esters and superior alcohols) were determined by SPME followed by GC–MS and diacetyl concentration was analysed by GC-ECD. All produced wines were evaluated sensorially. All O. oeni strains could perform MLF and degrade the malic acid (2.5 g/L) but had a different effect on wine composition. The major variation was observed for the acetic acid (0.25 g/L, 0.35 g/L and 0.45 g/L respectively for the three strains) as also for the diacetyl production (max 1.5±0.5 mg/L). The volatile compounds levels were found to be slightly different in the produced wines and strain effect was observed for both, bacterial and yeast species. The effect of malolactic fermentation to Moschofilero white and rosé wines depends on the bacterial strains as well as the yeast strain used for alcoholic fermentation. MLF can lead to decreased grassy character, boost the fruity notes and improve the wine mouthfeel, depending on the strain used.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kotseridis Yorgos, Maria Dimopoulou, Marilena Panagopoulou, Vicky Tροιανοu, Niki Proχenia

Laboratory of Enology and Alcoholic Drinks (Lead), Agricultural University of Athens, Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece.
Laboratory of Enology & Alcoholic Drinks (Lead), Agricultural University of Athens, Athens, Greece.
Innovino, Research & Development, Pallini, Greece.
Laboratory of Enology & Alcoholic Drinks (Lead), Agricultural University of Athens, Athens, Greece.

Contact the author

Keywords

malolactic fermentation, moschofilero, lactic acid bacteria, o. oeni, mouthfeel

Citation

Related articles…

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature
especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and
iii) identifying the impact of temperature on grape berry attributes.

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

Soil management with cover crops in irrigated vineyards: effects in vine microclimate (cv. Malbec) grown in a terroir of Agrelo (Luján de Cuyo)

L’objectif de cette recherche a été de déterminer les effets de l’enherbement dans le microclimat de la vigne. On a comparé cinq couvertures de cycle végétatif différent en ce qui concerne l’entretien du sol sans culture par application d’herbicides. L’étude a été developpée dans un vignoble cv. Malbec conduit en haute espalier, situé en a terroir á Agrelo, Luján de Cuyo, Mendoza, Argentine. On a déterminé des paramètres micro climatiques:

Impact of enological enzymes on aroma profile of Prosecco wines during second fermentation and sur lie aging

Proseccco is a famous italian Protected Designation of Origin (PDO) produced in two regions: Veneto e Friuli Venezia Giulia, however, the production is mainly concentrated in the province of Treviso. These territories are characterized by plains with some hilly areas and temperate climate. Its Production regulation provides a minimum utilization of 85% of Glera grapes, a local white grape variety, and up to a maximum of 15% of other local and international varieties. Prosecco second fermentation takes place, according to the Charmat method, in autoclaves.