Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Abstract

Moschofilero is a native grape variety, classified as a ‘gris’ type variety, that is cultivated in PDO Mantineia, Peloponissos, Greece. It is used for the production of both white and rosé wines. Due to high altitude of the vineyards, the harvest is done by mid October, and many vintages are characterised by high acidities and low pH values. Besides that, Moschofilero wines record usually low alcohol levels and thus these wines lack body and generally are considered to be ‘medium’ to ‘low’ body wines. The aim of our work was on one hand to evaluate the impact of three different O. oeni strains, to qualitative characteristics of Moschofilero white and rose wine and to check if MLF boosts the mouthfeel of the wines. Laboratory scale alcoholic fermentation (AF) monitoring was performed every day by density measurements, while malic acid degradation was measured with the RQflex reflectometer. Two different S. cerevisiae strains were used to perform AF and three commercial strains of O. oeni for MLF. Classical wine analyses (acidity, sulfite, residual sugars) and organic acid composition (tartaric, malic, citric, lactic, succinic and acetic acid) were performed in all wines after MLF. Fermentative volatile compounds (esters and superior alcohols) were determined by SPME followed by GC–MS and diacetyl concentration was analysed by GC-ECD. All produced wines were evaluated sensorially. All O. oeni strains could perform MLF and degrade the malic acid (2.5 g/L) but had a different effect on wine composition. The major variation was observed for the acetic acid (0.25 g/L, 0.35 g/L and 0.45 g/L respectively for the three strains) as also for the diacetyl production (max 1.5±0.5 mg/L). The volatile compounds levels were found to be slightly different in the produced wines and strain effect was observed for both, bacterial and yeast species. The effect of malolactic fermentation to Moschofilero white and rosé wines depends on the bacterial strains as well as the yeast strain used for alcoholic fermentation. MLF can lead to decreased grassy character, boost the fruity notes and improve the wine mouthfeel, depending on the strain used.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kotseridis Yorgos, Maria Dimopoulou, Marilena Panagopoulou, Vicky Tροιανοu, Niki Proχenia

Laboratory of Enology and Alcoholic Drinks (Lead), Agricultural University of Athens, Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece.
Laboratory of Enology & Alcoholic Drinks (Lead), Agricultural University of Athens, Athens, Greece.
Innovino, Research & Development, Pallini, Greece.
Laboratory of Enology & Alcoholic Drinks (Lead), Agricultural University of Athens, Athens, Greece.

Contact the author

Keywords

malolactic fermentation, moschofilero, lactic acid bacteria, o. oeni, mouthfeel

Citation

Related articles…

Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of the application of three hormone- and natural-based elicitors in Tempranillo.

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).

How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments on Chilean Cabernet-Sauvignon, and ii) develop machine learning models to predict its quality. 

Leaf vine content in nutrients and trace elements in La Mancha (Spain) soils: influence of the rootstock

The use of rootstock of American origin has been the classic method of fighting against Phylloxera for more than 100 years. For this reason, it is interesting to establish if different rootstock modifies nutrient composition as well as trace elements content that could be important for determining the traceability of the vine products. A survey of four classic rootstocks (110-Richter, SO4, FERCAL and 1103-Paulsen) and four new ones (M1, M2, M3 and M4) provided by Agromillora Iberia. S.L.U., all of them grafted with the Tempranillo variety, has been carried out during 2019. The eight rootstocks were planted in pots of 500 cc, on three soils with very different characteristics from Castilla-La Mancha (Spain). In the month of July, the leaves were collected and dried in a forced air oven for seven days at 40ºC. Then, the samples were prepared for the analysis determination, carried out by X-Ray fluorescence spectrometry. The results obtained showed that in the case of content in mineral elements in leaf, separated by soil type, we can report the importance of few elements such as Si, Fe, Pb and, especially, Sr. The rootstock does not influence the composition of the vine leaf for the studied elements that are the most important in determining the geochemical footprint of the soil. The influence of the soil can be discriminated according to some elements such as Fe, Pb, Si and, especially, Sr.

Big data analysis of pesticides from the vine to the winery

Of biocontrol products and resistant grape varieties, synthetic pesticides are still widely used to control fungal diseases and protect vines from potential damage caused by pests. The use of pesticides is strictly regulated, and their use can sometimes lead to transfer from the grapes to the must and then into the wine. The study of pesticide residues in grapes and wines is commonly carried out by wine producers in order, among other things, to optimize treatment routes, check that products comply with regulations, and ultimately guarantee the food safety of the wine.