Macrowine 2021
IVES 9 IVES Conference Series 9 Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile


The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process. The aim of the present research was to study the metabolism of S. cerevisiae under two different nitrogen supplementation status and to investigate the relative expression of specific genes, that are directly related to the biosynthesis of specific potent odornats such as, terpenes and esters. 

The commercial yeast strains 1X (S.cerevisiae) and 2X (S.cerevisiae x S.bayanus) were inoculated in Moschofilero (Vitis Vinifera L. cv) grape must under two different concentrations of yeast assimilable nitrogen (YAN), a  low at 150 mg/L and a high at 300 mg/L. The produced wines were analyzed for their standard enological parameters, their volatile composition by SPE/GC–MS analysis as well as for their sensory profile. Totally 8 fermentations trials, were realised in triplicate. The fermentation was monitored by measuring the optical density and sugar consumption. Metabolic response was tested through real-time RT-PCR of genes implicated in aroma production of esters and terpenes such as ATF1, ATF2, EEB1, EHT1, IAH1, BGL2, EXG1. Sampling for metabolites and gene expression analysis were taken at the time of inoculation, after 48 hours, when two thirds of the sugars were depleted and at the end of the alcoholic fermentation (< 2g/L rs).

In terms of the volatile characterization of the wines, esters, linalool and nerol appeared to be clearly distinct between the different levels of YAN, which confirms the specialization in volatile compounds production among different nitrogen concentration levels. For instance, linalool was found to be at 0.05 mg/L for low nitrogen concentration, while high nitrogen levels resulted to a concentration of 0.12 mg/L. Real-time-PCR results revealed that, in both cases of nitrogen implementation, the analyzed genes were found to be expressed mainly before the fermentation of the 70% of the sugars. In addition, an overexpression of the BGL2 gene, corresponded well to the linalool concentration found, was observed in case of high nitrogen condition. Also, the EHT1 was expressed five times higher in case of high nitrogen concentration. Finally, correlations between ethyl esters and EEB1, acetate esters and ATF2 (p<0.05) were also found in both cases. 

Our study revealed the impact of different nitrogen implementations on the volatile compounds and the relative expression of specific genes. Metabolic analysis of selected volatile components of the wine aroma in conjunction with transcriptional analyses provide a great approach to orient the fermentation process towards a desirable wine aromatic profile.


Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article


Despina Lola, Chrysanthi KALLONIATI, Maria DIMOPOULOU, Maria Ioanna XENIA, Emmanouil FLEMETAKIS, Yorgos KOTSERIDIS

Laboratory of Oenology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Molecular Biology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Greece, Laboratory of Oenology and Alcoholic Drinks  (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece Laboratory of Molecular Biology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece, Laboratory of Enology and Alcoholic Drinks (LEAD), Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

Contact the author


yeast metabolism, yan, nitrogen supplementation, volatile profile, gene expression


Related articles…

Sugar loading and phenolic accumulation as affected by ripeness level of Syrah/R99 grapes

Le chargement et l’accumulation des sucres ainsi que la biosynthèse des phénols ont été étudiés sur la Syrah, dans le cadre d’un programme de recherche de paramètres qui permettraient de déterminer une ou plusieurs qualités de raisin en relation avec des styles de vins pour un terroir donné. La relation entre la dynamique d’accumulation des

Vineyards and clay minerals: multi-technique analytical approach and correlations with soil properties

Purpose of this research is to quantitatively assess the mineral component of vineyard soils, with particular attention to the mineralogical analysis of clays, which represent an element of high importance in the vineyard culture as well as in general agriculture. An X-ray diffraction (XRD) / thermogravimetric (TG) multi-technique analytical approach was developed, tested on soil samples taken from vineyards around the world. This codified analytical procedure was necessary to obtain precise qualitative and quantitative mineralogical data, globally comparable to distinguish the geopedological identity of the vineyards. Soil samples from vineyards of various locations were analysed, in very different geological conditions. The bulk-rock quantitative phase analysis (QPA) was obtained by the Rietveld method while the detailed composition of the clay-sized fraction was determined by modelling of the oriented X-ray diffraction patterns. The research provided a precise classification of the mineral component of soils, distinguishing the mineral phases of the clays and the so-called mixed-layer clay minerals. We found that the content in mixed layers can be directly correlated with the water retention and the cation exchange capacity ​​of the soil, while the presence of other clayey minerals and phyllosilicates in this research did not affect this CEC parameter, which codes the fertility level of the soils. The study demonstrates that terroir, in particular soils formed in complex or very different geological conditions, can only be effectively interpreted by properly analysing its mineral phases, in particular the mixed-layer clay component. These are characteristic abiotic ecological indicators, which may have specific eco-physiological influences on the plant.

A new approach for sensory characterization of grape. Relationship with chemical composition

Characterize taste and mouthfeel properties of grapes elicited by the phenolic fraction (PF) of grape berries and establish relationships with chemical variables. METHODS: As many as 31 diverse grape lots of Tempranillo Tinto and Garnacha Tinta from three different regions were harvested. Grapes were destemmed and macerated in 15% of ethanol for one week and extracts were submitted to solid phase extraction. The recovered polyphenolic fraction was reconstituted in wine model and characterized by a panel of 21 wine experts employing a list of 23 taste and mouthfeel-related attributes following a rate-k-attributes methodology. RESULTS: Six significant attributes among the 31 samples differed based on ANOVA results: “dry”, “coarse”, “bitter”, “dry on tongue”, “sticky” and “watery”. PCA with VARIMAX algorithm was calculated.

Effects of mesoclimate on the yield, quality and phenolic maturity of Grenache

The potential climate change, due to global change, will increase temperature general and could increase at local level. These changes are not going to be the same in different parts of the world, being especially important in the Mediterranean Basin.

First step in the preparation of a soil map of the Protected Designation of Origin Valdepeñas (Central, Spain)

This work is a first step to make a map of vineyard soils. The characterization of the soils of the Protected Designation of Origin (D.P.O.) Valdepeñas will allow to group the studied profiles according to their physico-chemical characteristics and the concentrations of most relevant chemical elements. 90 soil profiles were analysed throughout the territory and the soils were sampled and described according to FAO (2006) and classified according to and Soil Taxonomy (2014). All samples were air dried, sieved and some physico-chemical parameters were determined following standard protocols. Also, major and trace elements were analysed by X-ray fluorescence. The statistically study was made using the SPSS program. Trend maps were made using the ArcGIS program. The studied soils have the following average properties: pH, 8.3; electrical conductivity, 0,20 dS/m (low); clay, 18.8% (medium) and CaCO3, 17.1% (high). In the study for the major elements. The major elements of these soils are Si, followed by Ca and Al, with an average content of 203.7 g/kg, 105.5 g/kg and 74.0 g/kg respectively. On the other hand, 27 trace elements have been studied. Of all of them, it can be highlighted the average values of Ba (361.8 mg/kg), Sr (129.3 mg/kg), Rb (83.4 mg/kg), V (74.2 mg/kg) and Ce (70.6 mg/kg). Ba, V and Ce values are higher and the values of Sr and Rb are lower to those found in the literature. The discriminant analysis shows a percentage of grouping of 91%. The content of chemical elements together with the physico-chemical characteristics allows grouping the soils in 4 group according to their order in the classification to Soil Taxonomy; due to the importance of the Calcisols in Castilla-La Mancha, it has been decided to establish them as their own group even if they do not appear in Soil Taxonomy classification.