Macrowine 2021
IVES 9 IVES Conference Series 9 Pruning vine-shoots as a new enological additive to differentiate and improve the quality of wines

Pruning vine-shoots as a new enological additive to differentiate and improve the quality of wines

Abstract

AIM:The objective of these work was to demonstrate that toasted fragments of pruning vine-shoots added to the wines after fermentation provide them with differentiated aromatic notes and improve their quality.

METHODS:Vine-shoots of the Tempranillo red variety were prepared in terms of size and type of toasting. Subsequently, they were added in different doses to the finished wine elaborated with grapes of the same variety and were macerated for up to 2 months, studying the evolution of the chemical and sensory profile. The wines with the best sensory profile were bottled and the study of their evolution was continued for 1 year. The parameters analyzed were the conventional enological ones, the phenolic composition by HPLC-DAD and the volatile composition by SBSE-GC-MS. The sensory analysis was carried out by a panel of 7 expert tasters and the visual, olfactory and taste phases were evaluated using a score from 1 (lowest perception) to 10 (highest perception) for each of the different attributes evaluated.

RESULTS:In all cases, an increase in aromatic notes related to dried fruits, a lower presence of drying and bitter tannins, as well as a decrease in bluish colors, fruity notes and herbaceous character were detected. The conventional chemical analysis was similar than the control wines while the results of the phenolic and aromatic compounds were consistent with the sensory analysis.

CONCLUSIONS:

The toasted fragments of pruning vine-shoots, considered until now as a viticulture residue, can be used as a new enological tool, as they are able to differentiate and improve the quality of the wines. This fact contributes to the sustainability of the vineyard and to the concept of circular viticulture.

ACKNOWLEDGMENTS:

This study was supported by USARVID019 Project (Ref.: IDI-20190844), financed by Pago de la Jaraba winery (Albacete, Spain) through the FEDER and CDTI entities.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cebrián-Tarancón, Cristina, Fernández-Roldán, Sánchez-Gómez, Rosario: . Alonso, Gonzalo.L, M. Rosario

Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain., Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain. Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain. Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain. Salinas, Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain.

Contact the author

Keywords

enological additive, maceration, red wine, sensorial improvement, toasted vine-shoots

Citation

Related articles…

Toward an automatic way to identify red blotch infected vines from hyperspectral images acquired in the field

Vineyards are affected by different virus diseases, which can lower yield and affect the quality of grapes. Grapevine red blotch disease is one of them, and no curative solution exists. Once infected, a vine must be removed and replaced with a virus-free vine (aka roguing). Screening vineyards to look for symptoms can be time-consuming and needs well-trained experts. To improve this process, we conducted an experiment identifying infected vines using a hyperspectral camera in the field.

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

Anthocyanins, flavonols and hydroxycinnamates of eight vitis vinifera cultivars from the balearic islands

In 2008 the anthocyanin, flavonol and hydroxycinnamate (HCT) contents of the skins of five coloured berry cultivars (‘Escursac’, ‘Esperó de Gall’, ‘Galmeter’, ‘Valent negre’ and ‘Vinater negre’), of two white cultivars (‘Argamussa’ and ‘Prensal blanc’) and of one weakly rose cultivar (‘Giró ros’), native from Balearic Islands, were characterized.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.