Macrowine 2021
IVES 9 IVES Conference Series 9 Pruning vine-shoots as a new enological additive to differentiate and improve the quality of wines

Pruning vine-shoots as a new enological additive to differentiate and improve the quality of wines

Abstract

AIM:The objective of these work was to demonstrate that toasted fragments of pruning vine-shoots added to the wines after fermentation provide them with differentiated aromatic notes and improve their quality.

METHODS:Vine-shoots of the Tempranillo red variety were prepared in terms of size and type of toasting. Subsequently, they were added in different doses to the finished wine elaborated with grapes of the same variety and were macerated for up to 2 months, studying the evolution of the chemical and sensory profile. The wines with the best sensory profile were bottled and the study of their evolution was continued for 1 year. The parameters analyzed were the conventional enological ones, the phenolic composition by HPLC-DAD and the volatile composition by SBSE-GC-MS. The sensory analysis was carried out by a panel of 7 expert tasters and the visual, olfactory and taste phases were evaluated using a score from 1 (lowest perception) to 10 (highest perception) for each of the different attributes evaluated.

RESULTS:In all cases, an increase in aromatic notes related to dried fruits, a lower presence of drying and bitter tannins, as well as a decrease in bluish colors, fruity notes and herbaceous character were detected. The conventional chemical analysis was similar than the control wines while the results of the phenolic and aromatic compounds were consistent with the sensory analysis.

CONCLUSIONS:

The toasted fragments of pruning vine-shoots, considered until now as a viticulture residue, can be used as a new enological tool, as they are able to differentiate and improve the quality of the wines. This fact contributes to the sustainability of the vineyard and to the concept of circular viticulture.

ACKNOWLEDGMENTS:

This study was supported by USARVID019 Project (Ref.: IDI-20190844), financed by Pago de la Jaraba winery (Albacete, Spain) through the FEDER and CDTI entities.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cebrián-Tarancón, Cristina, Fernández-Roldán, Sánchez-Gómez, Rosario: . Alonso, Gonzalo.L, M. Rosario

Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain., Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain. Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain. Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain. Salinas, Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain.

Contact the author

Keywords

enological additive, maceration, red wine, sensorial improvement, toasted vine-shoots

Citation

Related articles…

GrapeBreed4IPM: developing sustainable solutions for viticulture through multi-actor innovation targeting breeding for integrated pest management

According to the World Economic Forum and the European Union’s Biodiversity Strategy for 2030, the loss of biodiversity and the collapse of ecosystems are major threats facing humanity in the future.

Chemical boundaries of wine identity: rationalizing grape and wine aroma diversity for improved terroir management

Aims: Wine perceived quality lies on a number of different factors. Among these, sensory features, which are in turn dependent on chemical composition, play a primary role. There is traditionally a great emphasis on producing wines that have specific sensory profiles, particularly aroma, that reflect identity features connected to the place and the variety of origin. In the case of high quality

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.

Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Tangible variation of sensory characteristics is often perceived in wine aged in similar barrels. This variation is mostly explained by differences in the wood chemical composition, and in the production of the barrels. Despite these facts, the literature concerning barrel-to-barrel variation and its effect on wine sensory and chemical characteristics is very scarce [1]. In this study, the barrel-to-barrel variation in barrel-aged wines was examined in respect of the most important phenolic compounds of oenological interest and chromatic characteristics, considering both the effects of the (individual) barrel and cooperage. A red wine was aged in 49 new medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months