Macrowine 2021
IVES 9 IVES Conference Series 9 Aroma quality of fortified wines from different Moscato cv. Cultivated in sicily

Aroma quality of fortified wines from different Moscato cv. Cultivated in sicily

Abstract

AIM: Vitis vinifera L. cv. Moscato includes different varieties, mainly white grapes with a medium-sized berry, spheroidal or slightly flattened in shape, yellow greenish color which becomes golden yellow or amber when exposed to the sun. Moscato varieties are mainly used for the production of sweet aromatic wines: Fortified, Sfursat and Passito Moscato wines are present on the market. Despite the increasing interest in sweet dessert wines, at the best of our knowledge, limited data are reported in literature on the composition of Moscato wines especially as regards the aroma volatile constituents which are determinant for the sensory features. In this context, the research aimed to verify the aroma quality of fortified wines produced from different Moscato varieties, not present in the Sicilian ampelographic panorama, in comparison with Moscato Bianco already grown on the island. A great attention has been given to the amount of terpenes, key aroma compounds for Moscato wines.

METHODS: Grapes of Vitis vinifera L. cv. Moscato of the different varieties (Giallo, Ottonel, Petit Grain, Rosa, Cerletti, Bianco Zucco and Bianco), were cultivated in the experimental vineyard of the Sicilian Wine and Oil Regional Institute (IRVO) located in Partinico (Sicily, Italy); grapes of Moscato Bianco variety were also harvested in the IRVO experimental vineyard located in Noto (Sicily, Italy), the area in which the Moscato Bianco DOC is produced. The phenological, vegetative-productive and fertility data were collected. The protocol to produce fortified wines was the same for all the varieties; the fermentation was stopped when the residual sugar content of must was about 100 g/L by adding 6g/hL of sulfur dioxide and ethanol (95% v/v) up to a total alcohol content of about 15% v/v. Physico-chemical analyses will be carried out on grapes and wines according to the EEC Official Method. Wine volatile aroma compounds were analysed by Headspace Solid Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS).

RESULTS Among the studied varieties, Moscato Giallo showed the highest productivity.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Antonella Verzera

Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy,Fabrizio CINCOTTA, Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy. Antonio SPARACIO, Sicilian Regional Institute of Wine and Oil, 90143 Palermo, Italy.   Salvatore SPARLA, Sicilian Regional Institute of Wine and Oil, 90143 Palermo, Italy. Concetta CONDURSO, Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy.

Contact the author

Keywords

Vitis vinifera L. cv. moscato; productivity; physico-chemical parameters; volatile profile

Citation

Related articles…

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes).

Adaptation and resilience of scions and rootstocks to water constraint? It’s complicated and requires an integrated approach

The ability, and the underlying mechanisms of grapevines to cope with and adapt to recurring water constraints, are the focuses of this study.

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1].

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Whole bunch fermentation: adding complexity, or just making ‘green’ wine?

Certain grape varieties contain negligible levels of isobutyl methoxypyrazine (IBMP) in grapes. However, it has long been known that grape stems