Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Abstract

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed. At present, they are mainly used to “secure” the fermentation process and avoid slow or sluggish fermentations. The consequences of such additions on the main reaction are well known (Beltran et al., 2005; Jiménez-Marti et al., 2007; Seguinot et al., 2018). However, their impact on the synthesis of aromas has been poorly studied. So, the main objective of this study was to compare the impact of nitrogen addition at different timings on both the kinetics and aroma synthesis. We also studied the effect of the initial nitrogen content of the must and the quantity of added nitrogen. To study the impact of these 3 parameters simultaneously, we used a Box-Behnken design and response surface modeling. Our results indicated that all three factors studied had important effects on fermentation kinetics and aroma production. The most remarkable points were the different regulation of the bioconversion of higher alcohols into acetate esters on one side and of fatty acids into ethyl esters on the other side. It was highlighted that the conversion of higher alcohols into acetate esters was maximum when nitrogen was added at the beginning of the stationary phase. Conversely, the highest conversion of acids into ethyl esters was reached when nitrogen was added close to the end of the stationary phase. This work enables to get a deeper understanding of the regulation of the yeast metabolism. It also underlines the possibility to refine the organoleptic profile of a wine by targeting the addition of nitrogen at a specific time during the stationary phase.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Joséphine Godillot 

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France,Christian PICOU, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Marc PEREZ, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Isabelle SANCHEZ, MISTEA, INRAE, Institut Agro, Montpellier, France Jean-Marie SABLAYROLLES, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Jean-Roch MOURET, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

alcoholic fermentation – nitrogen additions  – fermentative aromas – box-behnken design

Citation

Related articles…

Application of new genomic technologies to improve the pathogen resistance of two local cultivars from Veneto region: Corvina and Garganega

Grapevine (Vitis spp.) is a globally significant fruit crop and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands.

The French grapevine breeding program resdur: state of the art and perspectives

The French grapevine breeding program for durable resistance to downy and powdery mildew (INRAE-ResDur) was initiated more than 20 years ago to help reduce the heavy use of plant protection products and provide a durable mean to cope with a strong pathogen pressure. This program has now proved to be effective, with about ten new varieties already officially registered. However, there is still a lot to be done (1) to reduce the duration of each breeding cycle, (2) to diversify disease factors’ pyramiding and anticipate emerging diseases, (3) to work towards larger adoption of the new resistant varieties. New breeding schemes incorporating for example genomic prediction of breeding values are being evaluated to accelerate genetic gains, saving cost and time while handling complex traits.

Sensory and physicochemical impact of proanthocyanidic tannins on red wine fruity aroma

AIM: Previous research on the fruity character of red wines highlighted the role of esters [1]. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall fruity aroma of wine, contributing to a masking effect [2][3]. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

Caracterización de suelos de la comarca Tacoronte-Acentejo

La comarca Tacoronte-Acentejo, con una extensión cultivada de 2.422 has. concentra un 20% de los viñedos de Canarias.