Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Abstract

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed. At present, they are mainly used to “secure” the fermentation process and avoid slow or sluggish fermentations. The consequences of such additions on the main reaction are well known (Beltran et al., 2005; Jiménez-Marti et al., 2007; Seguinot et al., 2018). However, their impact on the synthesis of aromas has been poorly studied. So, the main objective of this study was to compare the impact of nitrogen addition at different timings on both the kinetics and aroma synthesis. We also studied the effect of the initial nitrogen content of the must and the quantity of added nitrogen. To study the impact of these 3 parameters simultaneously, we used a Box-Behnken design and response surface modeling. Our results indicated that all three factors studied had important effects on fermentation kinetics and aroma production. The most remarkable points were the different regulation of the bioconversion of higher alcohols into acetate esters on one side and of fatty acids into ethyl esters on the other side. It was highlighted that the conversion of higher alcohols into acetate esters was maximum when nitrogen was added at the beginning of the stationary phase. Conversely, the highest conversion of acids into ethyl esters was reached when nitrogen was added close to the end of the stationary phase. This work enables to get a deeper understanding of the regulation of the yeast metabolism. It also underlines the possibility to refine the organoleptic profile of a wine by targeting the addition of nitrogen at a specific time during the stationary phase.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Joséphine Godillot 

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France,Christian PICOU, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Marc PEREZ, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Isabelle SANCHEZ, MISTEA, INRAE, Institut Agro, Montpellier, France Jean-Marie SABLAYROLLES, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Jean-Roch MOURET, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

alcoholic fermentation – nitrogen additions  – fermentative aromas – box-behnken design

Citation

Related articles…

La caracterización de los moscateles

Ya en 1964 GIOVANNI DALMASSO et alii describiendo el Moscato bianco (12) ponían de manifiesto la dificultad realmente ardua en descubrir “si no todas, por lo menos las más importantes variedades que llevan el nombre de Moscateles

Understanding novel germplasm solutions: sensory, chemical and preliminary hedonic insights of wines made from Australian first-generation mildew resistant cultivars

One of the major issues for wine production in Australia is the management and eradication of powdery and downy mildews and the associated yield losses they present, costing Australian grape growers upwards of AUD$160M per annum [1].

Biodiversidad de levaduras no-Saccharomyces aisladas de viñedos uruguayos: Lachancea thermotolerans y su potencial en la industria de bebidas fermentadas

Non-saccharomyces yeasts play a crucial role in fermentation, producing a variety of secondary metabolites and enzymes that contribute to aromatic and sensory complexity compared to saccharomyces yeasts. It is crucial to understand and control the dynamics of non-saccharomyces yeasts to produce distinctive and high-quality fermented beverages.

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.

Physiological response to drought and heat stress in the leaves of table grape varieties

Increasingly pronounced climate changes, including prolonged drought periods, pose a significant challenge to the cultivation of table grape varieties.