Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Abstract

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed. At present, they are mainly used to “secure” the fermentation process and avoid slow or sluggish fermentations. The consequences of such additions on the main reaction are well known (Beltran et al., 2005; Jiménez-Marti et al., 2007; Seguinot et al., 2018). However, their impact on the synthesis of aromas has been poorly studied. So, the main objective of this study was to compare the impact of nitrogen addition at different timings on both the kinetics and aroma synthesis. We also studied the effect of the initial nitrogen content of the must and the quantity of added nitrogen. To study the impact of these 3 parameters simultaneously, we used a Box-Behnken design and response surface modeling. Our results indicated that all three factors studied had important effects on fermentation kinetics and aroma production. The most remarkable points were the different regulation of the bioconversion of higher alcohols into acetate esters on one side and of fatty acids into ethyl esters on the other side. It was highlighted that the conversion of higher alcohols into acetate esters was maximum when nitrogen was added at the beginning of the stationary phase. Conversely, the highest conversion of acids into ethyl esters was reached when nitrogen was added close to the end of the stationary phase. This work enables to get a deeper understanding of the regulation of the yeast metabolism. It also underlines the possibility to refine the organoleptic profile of a wine by targeting the addition of nitrogen at a specific time during the stationary phase.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Joséphine Godillot 

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France,Christian PICOU, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Marc PEREZ, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Isabelle SANCHEZ, MISTEA, INRAE, Institut Agro, Montpellier, France Jean-Marie SABLAYROLLES, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France Jean-Roch MOURET, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author

Keywords

alcoholic fermentation – nitrogen additions  – fermentative aromas – box-behnken design

Citation

Related articles…

The impact of delayed grapevine budbreak on lemberger wine sensory compounds under variable weather conditions

Spring freeze events threaten grape production globally. As grape buds emerge from dormancy in spring, freezing temperatures have the potential to damage green tissues, decreasing yield potential and compromising fruit quality by harvest.

Transforming the grapevine world through new breeding techniques

Climate change and environmental degradation are existential threats to europe and the world. One of the most important objectives is to reduce by 2030 the use and the risk of chemical pesticides and fertilisers, reducing nutrient losses and increasing organic farming. Grapevine (vitis spp.) is one of the major and most economically important fruit crops worldwide. It is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

Rootstock drought tolerance under dry-farmed conditions in Oregon’s Willamette Valley

Rootstocks are used in vineyards worldwide and have been the focus of many studies. However, rootstock performance varies based on regional climates and soil types. As Oregon experiences warmer seasons and variable precipitation patterns, growers are interested in rootstocks with more drought tolerance than the commonly planted rootstocks: 3309C, Riparia Gloire, and 101-14 Mgt. In Oregon’s Willamette Valley, annual precipitation is typically sufficient to make dry-farming possible and use of irrigation is limited.

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

In neutral grapes, it is known that most aroma compounds are present as non-volatile
precursors.

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.