Macrowine 2021
IVES 9 IVES Conference Series 9 Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

Abstract

AIM: The aim of this work was to characterize 18 oenological tannins by the polyphenolic, antioxidant, and sensory point of view. These properties have been evaluated in model wine solution as well as in red wine added with these tannins to observe matrix effects and therefore to assess their performances in a real condition.

METHODS: Polyphenolic content (A280, Folin-Ciocalteu, proanthocyanidins assay) and antioxidant properties (ABTS, DPPH, FRAP, CUPRAC) were studied in a model wine solution (12 % ethanol, 4 g/L tartaric acid, pH 3.5). Bitterness and astringency sensory analysis (Descriptive Analysis) of selected formulations (40 g/hL) was performed in water and in red wine. After 1 month, the tannin-added wines were evaluated in terms of polyphenolic content (A280), antioxidant capacity (DPPH, FRAP), total anthocyanins, and polymerized pigments.

RESULTS: Antioxidant properties of oenological tannins and their influence on wine characteristics were strongly affected firstly by their polyphenolic richness, followed by their origin. In particular, the great antioxidant capacity of hydrolysable tannins was evident in both model wine solutions and wines after one month. Ellagitannins, thanks to this property, also led to an increased percentage of wine polymeric pigments with respect to the control whereas gallotannins showed low polymerization ability. Good performances were evidenced also by Acacia tannins additions in terms of increased polymeric pigments ratio. Moreover, quebracho formulations showed the highest perceived astringency and bitterness, but only in water solutions. In the same medium, ellagitannins exhibited a low value of bitterness and astringency but, on the contrary, they were perceived as astringent in red wine highlighting a significant matrix effect.

CONCLUSIONS

Phenolic content and antioxidant properties of tannin formulations in model wines are correlated with the characteristics of wines after one month. Among others, ellagitannins confirmed their potentialities in added wine regarding increased antioxidant capacity and polymeric pigments ratio. Nevertheless, astringency and bitterness are affected in different extent by the matrix, highlighting the influence of wine features on the final product sensory properties

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Luca Rolle

University of Turin – Department of Agricultural, Forest and Food Sciences,Maria Alessandra PAISSONI, University of Turin, Italy Giovanni BITELLI,  University of Turin, Italy Mar VILANOVA, CSIC- Misión Biológica de Galicia, Spain Carlo MONTANINI, AEB S.p.A., Italy Simone GIACOSA, Università degli Studi di Torino, Italy Luca ROLLE,  University of Turin, Italy Susana RÍO SEGADE,  University of Turin, Italy

Contact the author

Keywords

oenological tannins, phenolic compounds, antioxidant capacity, astringency, descriptive analysis

Citation

Related articles…

Impact of winemaking processes on wine polysaccharides, improving by qNMR

Today the knowledge in terms of molecular composition of the colloidal matrix is ​​not enough in order to control its stability, according to the number of winemaking and wine stabilization processes. The physico-chemical processes during the winemaking change the composition and quantity of wine macromolecules. The goal today is to determine which analytical techniques will allow to discriminate these winemaking processes in order to better understand their impact on colloidal matrix stability as well as which molecules are responsible for its instabilities. METHODS: Wines obtained after conventional winemaking were subjected to different fining and chemical stabilization treatments. Different methods were used to investigate the wine macromolecular composition and stability after chemical stabilization, including quantitative and qualitative analyzes of total soluble polysaccharides by extraction under acidified ethanol, and by size exclusion separation as well as qNMR metabolomics. RESULTS: Observation of a slight difference at the quantitative level using classical analysis between the winemaking processes was observed as well as a strong discrimination by qNMR metabolomics.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

An innovative 21st century frost alert system for an age-old viticulture challenge

Damage during the budbreak period due to spring season frosts remains one of the most significant weather-related challenges to viticulture around the world. For example, in 2021, €2bn of estimated damage was reported in france while >50% of vineyards were badly affected in the UK in 2017.

Impact of toasting on oak wood aroma: creation of an oak wood aroma wheel

The impact of toasting process to produce aroma from oak wood intrinsic composition is well documented. It is admitted that such complexity contribute to the wine quality after barrel ageing. Despite our knowledge on the molecular identification of aroma impact compounds of oak wood, little research have been carried out, on a sensory level, on the aroma diversity of toasted oak wood.

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.