Macrowine 2021
IVES 9 IVES Conference Series 9 Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

Abstract

AIM: The aim of this work was to characterize 18 oenological tannins by the polyphenolic, antioxidant, and sensory point of view. These properties have been evaluated in model wine solution as well as in red wine added with these tannins to observe matrix effects and therefore to assess their performances in a real condition.

METHODS: Polyphenolic content (A280, Folin-Ciocalteu, proanthocyanidins assay) and antioxidant properties (ABTS, DPPH, FRAP, CUPRAC) were studied in a model wine solution (12 % ethanol, 4 g/L tartaric acid, pH 3.5). Bitterness and astringency sensory analysis (Descriptive Analysis) of selected formulations (40 g/hL) was performed in water and in red wine. After 1 month, the tannin-added wines were evaluated in terms of polyphenolic content (A280), antioxidant capacity (DPPH, FRAP), total anthocyanins, and polymerized pigments.

RESULTS: Antioxidant properties of oenological tannins and their influence on wine characteristics were strongly affected firstly by their polyphenolic richness, followed by their origin. In particular, the great antioxidant capacity of hydrolysable tannins was evident in both model wine solutions and wines after one month. Ellagitannins, thanks to this property, also led to an increased percentage of wine polymeric pigments with respect to the control whereas gallotannins showed low polymerization ability. Good performances were evidenced also by Acacia tannins additions in terms of increased polymeric pigments ratio. Moreover, quebracho formulations showed the highest perceived astringency and bitterness, but only in water solutions. In the same medium, ellagitannins exhibited a low value of bitterness and astringency but, on the contrary, they were perceived as astringent in red wine highlighting a significant matrix effect.

CONCLUSIONS

Phenolic content and antioxidant properties of tannin formulations in model wines are correlated with the characteristics of wines after one month. Among others, ellagitannins confirmed their potentialities in added wine regarding increased antioxidant capacity and polymeric pigments ratio. Nevertheless, astringency and bitterness are affected in different extent by the matrix, highlighting the influence of wine features on the final product sensory properties

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Luca Rolle

University of Turin – Department of Agricultural, Forest and Food Sciences,Maria Alessandra PAISSONI, University of Turin, Italy Giovanni BITELLI,  University of Turin, Italy Mar VILANOVA, CSIC- Misión Biológica de Galicia, Spain Carlo MONTANINI, AEB S.p.A., Italy Simone GIACOSA, Università degli Studi di Torino, Italy Luca ROLLE,  University of Turin, Italy Susana RÍO SEGADE,  University of Turin, Italy

Contact the author

Keywords

oenological tannins, phenolic compounds, antioxidant capacity, astringency, descriptive analysis

Citation

Related articles…

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.

Generation of radicals in wine by cavitation and study of their interaction with metals, phenols and carboxylic acids

High-power ultrasounds have been related to an accelerated aging of wines, an effect that has been associated to the formation of radical species caused by the cavitation phenomenon [1]. This phenomenon consists of the formation of bubbles in the liquid medium that, when they collapse, cause high-pressure hot spots and temperatures of up to 4800 k [2], notably increasing the reactivity in the medium.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces.