Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

Abstract

AIM Aiming to explore the possibility of shortening red winemaking maceration times (1,2), this study presents the effect of the application of high-power ultrasounds to crushed grapes, at winery-scale, on the content of varietal volatile compounds (free and glycosidically-bound) in musts and on the overall aroma of wines.

METHODS Two different frequencies (20 kHz and 28 kHz) were tested and the combination of grape sonication and different maceration times on wine aroma was also evaluated. The volatile compounds were isolated by solid phase extraction and analyzed by gas chromatography-mass spectrometry, carrying out a sensory evaluation of wines by quantitative descriptive analysis

RESULTS Sonication produced an increase in the concentration of free varietal compounds such as C6 al-cohols, terpenes and norisoprenoids in musts and also in wines made with 48h of skin maceration, being less efficient in the extraction of the bound fraction. Fermentation compounds were also positively affected by ultrasound treatment, although this effect was variable depending on the frequency used, the maceration time and the type of compound. All the wines made from sonicated grapes had better scores in the evaluated olfactory attributes with respect to the control wines 

CONCLUSIONS

Sonication could produce an increase in the content of some volatile compounds of sensory relevance, obtaining wines with an aroma quality similar or higher than those elaborated with longer maceration times (3).

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rodrigo Oliver-Simancas 

Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain.,María Consuelo, DÍAZ-MAROTO, Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain. María Elena, ALAÑÓN PARDO, Area of Food Technology, Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain. Paula, PÉREZ PORRAS, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30071 Murcia, Spain. Ana Belén BAUTISTA-ORTÍN, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30071 Murcia, Spain. Encarna GÓMEZ-PLAZA, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30071 Murcia, Spain.

Contact the author

Keywords

ultrasounds; wine; volatile compounds; aroma

Citation

Related articles…

Efectos del deshojado y de su combinación con el aclareo de Racimos en los componentes básicos de la producción y del Mosto, sobre cv. Tempranillo en la D.O. Ribera del Duero

Las técnicas de manejo del canopy de la vid pueden favorecer la adaptación de los sistemas de conducción a diversas condiciones de cultivo para obtener uva de calidad.

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality.

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%.

From varietal and terroir expression to off-odors: chemical background of wine aroma evolution during aging

Expression of sensory attributes that reflect the varietal and geographical origin of wines (aka terroir) is central to perceived wine quality and reputation of wine producing regions.

Vine phenology and climate in Bordeaux, since the beginning of the XIXth century

We analyze the effects of climate (temperature and pluviometry) on the phenologic stages of the vine (débourrement, flowering, ripening and grape harvest). We rebuilt time series starting from the beginning of the XIXth century for the Medoc and the area of Bordeaux, data very seldom mobilized by researchers.