Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines

Abstract

AIM Aiming to explore the possibility of shortening red winemaking maceration times (1,2), this study presents the effect of the application of high-power ultrasounds to crushed grapes, at winery-scale, on the content of varietal volatile compounds (free and glycosidically-bound) in musts and on the overall aroma of wines.

METHODS Two different frequencies (20 kHz and 28 kHz) were tested and the combination of grape sonication and different maceration times on wine aroma was also evaluated. The volatile compounds were isolated by solid phase extraction and analyzed by gas chromatography-mass spectrometry, carrying out a sensory evaluation of wines by quantitative descriptive analysis

RESULTS Sonication produced an increase in the concentration of free varietal compounds such as C6 al-cohols, terpenes and norisoprenoids in musts and also in wines made with 48h of skin maceration, being less efficient in the extraction of the bound fraction. Fermentation compounds were also positively affected by ultrasound treatment, although this effect was variable depending on the frequency used, the maceration time and the type of compound. All the wines made from sonicated grapes had better scores in the evaluated olfactory attributes with respect to the control wines 

CONCLUSIONS

Sonication could produce an increase in the content of some volatile compounds of sensory relevance, obtaining wines with an aroma quality similar or higher than those elaborated with longer maceration times (3).

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rodrigo Oliver-Simancas 

Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain.,María Consuelo, DÍAZ-MAROTO, Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain. María Elena, ALAÑÓN PARDO, Area of Food Technology, Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain. Paula, PÉREZ PORRAS, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30071 Murcia, Spain. Ana Belén BAUTISTA-ORTÍN, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30071 Murcia, Spain. Encarna GÓMEZ-PLAZA, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30071 Murcia, Spain.

Contact the author

Keywords

ultrasounds; wine; volatile compounds; aroma

Citation

Related articles…

Method for the evaluation of climatic changes envisaging the protection of grape-growing terroirs: the Géoviticulture MCC system in the evaluation of the potential impact of the construction of hydroelectric power plants on viticulture

La recherche, conduite en 2002, a envisagé l’estimation, a priori, de l’effet du changement mesoclimatique sur le potentiel qualitatif de la région viticole de la Serra Gaúcha (Vallée du Rio das Antas) – Brésil, en fonction de la construction de 3 usines hydroélectriques.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

Viticultural characterisation of soils from triassic period at Beaumes-de-Venise (Côtes du Rhône, France)

Wineries of Beaumes-de-Venise area make their best red wines with grapes from the “Triassic terroir”. This « terroir » is characterized by soils from the Triassic period. These specific soils are complex and quite heterogeneous. They originate from an eventful geological history to keep in mind to understand soils geographical distribution.

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.