Macrowine 2021
IVES 9 IVES Conference Series 9 Phenolic and volatile profiles of south tyrolean pinot blanc musts and young wines

Phenolic and volatile profiles of south tyrolean pinot blanc musts and young wines

Abstract

AIM. Assess the impact of different vineyards and winemaking variables on the phenolic and volatile profiles of Pinot Blanc musts and young wines from South Tyrol.

METHODS. Grapes were harvested during September 2019 in 3 vineyards near Ora (Italy) at 450 m (MM), 550 m (K) and 800 m (V) a.s.l. Six different types of Pinot Blanc musts and young wines were studied in 3 replicates. Study A – 3 different vineyards (MM_C, K_C, V_C), but same winemaking; Study B – same vineyard (V), but 3 different vinifications: i) grapes were frozen before crushing (V_F); ii) same as V_F, but co-inoculation yeast/malolactic bacteria (V_F_ML); iii) no grape freezing, but co-inoculation yeast/malolactic bacteria (V_ML). Phenolics were analysed by HPLC-DAD and HPLC-QqQ-MS, while volatiles were investigated by SPME-HS-GCxGC-ToF-MS. Standard oenological parameters were measured using a multi-parametric analyser, alcohol distillation, pH-meter and chemical titration. The data were statistically processed with ANOVA and Principal Component Analysis (PCA).

RESULTS. Upon a dataset of 27 phenolic compounds identified in musts, a good separation among samples was achieved using PCA. The musts produced without pre-fermentative grape freezing had significantly higher amounts of catechin, gallocatechin and astilbin. Besides, the musts from the same vineyard, but with frozen grapes showed higher concentrations of ethanol, glucose-fructose, malic acid, and lower concentration of tartaric acid. 46 phenolic compounds were identified in wines. The PCA separated well the samples of Study A: caftaric acid showed the most significant difference as well as the highest relative abundance. The PCA showed that the phenolic profile of the wines of Study B (V_C, V_F, V_F_ML, V_ML) clustered samples based on the pre-fermentative grape freezing. Wines made without frozen grapes were separated due to the higher phenolic concentrations. The volatile profile of wines after 1 month of storage contained 32 compounds. The PCA not only grouped samples according to the grape freezing, but it also showed that wines with no applied grape freezing were well clustered in terms of the presence/absence of malolactic fermentation in their winemaking. V_C samples were described by higher abundances of branched chain alcohols, while samples V_ML – by ethyl and phenylethyl esters.

CONCLUSIONS

The profiles of phenolics and volatiles were good discriminants of South Tyrolean Pinot Blanc wines produced under the same winemaking technology but harvested in different vineyards. In this study, the pre-fermentative grape freezing negatively affected concentrations of phenolics. The literature shows that freezing positively enhances contents only of anthocyanins and flavanol glucosides, while it negatively affects contents of phenolic acids and flavanols, that are main phenolic compound in white wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vakare Merkyte

1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy,Simone POGGESI, 1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy Edoardo LONGO, 1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy Fabian STENICO, 1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy Giulia WINDISCH, 1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy Emanuele BOSELLI, 1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy

Contact the author

Keywords

pinot blanc; white wine; phenolic profile; volatile profile; grape freezing; malolactic fermentation; chemical markers; vinification practices

Citation

Related articles…

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

Description of the effect of the practical management in the characterization of « terroir effect »

The characterization of « the soil effect » in vine growing is often limited to the description of the physical components of the terroir. Many works were done in this direction and corresponded to geological, pedological or agronomical approaches. However, if the physical environment influences the vine and its grapes, its effect becomes limited at the scale of exploitation. Thus, it could be important to consider how the viticulturist « translated » the potential.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Aim: To quantify the extent to which national mixes of wine grape varieties (in terms of vineyard bearing area) have become more or less diversified, and ‘internationalized’, since wine globalization accelerated from the 1990s.

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.