Macrowine 2021
IVES 9 IVES Conference Series 9 Phenolic extraction and mechanical properties of skins and seeds during maceration of four main italian red wine grape varieties

Phenolic extraction and mechanical properties of skins and seeds during maceration of four main italian red wine grape varieties

Abstract

AIM: Red grape varieties are characterized by different phenolic contents (prominently tannins and anthocyanins) found in skins and seeds. The extractability of these compounds varies during maceration, as well as the mechanical properties of skins and seeds. Four main Italian red winegrape varieties were tested to understand these differences during a simulated maceration process.

METHODS: Vitis vinifera L. cv. Aglianico, Nebbiolo, Primitivo, and Sangiovese grape skins, seeds, and joint skin+seeds were subjected to 10-day simulated maceration in a buffer solution (pH 3.40), with increasing contents of ethanol to simulate the fermentation trend. The phenolic extractable content (tannins and anthocyanins by spectrophotometry and HPLC) was evaluated during the simulated maceration. Mechanical-acoustic properties of skins and seeds were performed before and after maceration.

RESULTS: The combined total phenolics release during the maceration of separately-extracted seeds and skins were higher compared to the joint extraction (seeds+skins); in this latter case, the seeds contribution become significant (p < 0.05) after 3 (Nebbiolo), 4 (Aglianico) or 10 days (Primitivo and Sangiovese). In three cases out of four the anthocyanin content was found slightly reduced when the seeds were jointly present: these appeared red-coloured at the end of the maceration, and a further extraction and quantitation of the colouring matter retained by seeds was conducted. Diverging effects on the skin or seeds mechanical-acoustic measurements were found with the maceration process, depending by the variety.

CONCLUSIONS

Varietal differences were highlighted in phenolic compounds simulated extraction from solid parts, particularly for seeds contribution and for their ability to hold colour pigments.

ACKNOWLEDGMENTS

MIUR project PRIN n. 20157RN44Y. P. Arapitsas, A. Gambuti, M. Marangon, L. Moio, L. Nouvelet, G. Parpinello, D. Perenzoni, L. Picariello, D. Slaghenaufi, G.B. Tornielli, A. Versari, S. Vincenzi

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Simone Giacosa

University of Torino, Italy – Maria Alessandra PAISSONI, University of Torino, Italy – Susana RÍO SEGADE, University of Torino, Italy – Andrea CURIONI, University of Padova, Italy – Fulvio MATTIVI, University of Trento, Italy – Paola PIOMBINO, University of Napoli, Italy – Arianna RICCI, University of Bologna, Italy – Maurizio UGLIANO, University of Verona, Italy – Vincenzo GERBI, University of Torino, Italy – Luca ROLLE, University of Torino, Italy

Contact the author

Keywords

italian red winegrapes, phenolic extraction, anthocyanins, tannins, grape seeds

Citation

Related articles…

Comportamiento de la variedade “Touriga Nacional” en la Región Demarcada del Douro, en diferentes condiciones climáticas y edáficas

A Região Demarcada do Douro, oferece uma diversidade geográfica, climática e biológica (grande número de castas em cultivo) extremamente grande e complexa, originando vinhas

Field performance of red and white “pilzwiderstandsfähige” (PIWI) cultivars in the south of Uruguay

As knowledge about the oenological potential of disease-tolerant grape varieties (PIWI) continues to grow and consumer demand for product safety and sustainable production increases, more governments worldwide are permitting the cultivation of these varieties [1].

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Alcohol preference and health behaviors in patients with cardiometabolic diseases: insights from the multi-center iact cross-sectional study

Recognizing the influence of alcohol preference on health behaviors is essential for developing tailored interventions that effectively promote healthier lifestyles and optimize disease management strategies in the vulnerable population of patients with cardiometabolic diseases (CMD). The present study aims to provide valuable insights into how alcohol preference relates to dietary habits and medication adherence among patients with CMD diseases.

Study of intramolecular distribution of hydrogen isotopes in ethanol depending on deuterium content of water and the origin of carbohydrates

The paper presents the results of consistently developing studies carried out in 2022-2024 on the distribution of deuterium 2H(D) in intracellular water of grapes and wine products, taking into account the influence of natural, climatic and technogenic factors using high-resolution quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR.