Macrowine 2021
IVES 9 IVES Conference Series 9 Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses


Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management. Objective of this work was to develop a rapid analysis method using the Absorbance-Transmission and fluorescence Excitation-Emission Matrix (A-TEEM) technique. Polyphenols exhibit characteristic and high fluorescence quantum yields, which makes them highly suitable for this technique. The method’s automatic real-time Inner Filter Effect (IFE) correction allows the quantification of minor compounds (Gilmore et al., 2016). IFE-corrected fluorescence EEM data and the absorbance data were combined, and the spectral data were regressed against the concentrations of 34 anthocyanins, flavan-3-ols, tannins, polymeric pigments, flavonols and hydroxycinnamic acids measured independently by HPLC-DAD and UV-vis. The study focused on comparing Partial Least Squares Regression (PLSR) and Extreme Gradient Boost Regression (XGBR) for the single- (fluorescence EEM or absorbance) and multi- (combined) block data. The calibration set comprised 1133 files acquired from 126 diverse experimental and commercial wines. Validation was carried out on two data sets, first by a 14% randomized sample split from the calibration data keeping instrument replicates together, and thereafter by another independent set of 96 files from 16 wines. As a general trend, validation of the multi-block data models with independent data using XGBR, compared to PLSR, yielded higher prediction correlation coefficients (R2P) and lower Root Mean Square Errors for Prediction (RMSEP). Considering all 34 compound fits, mean R2P of 0.947 with XGBR and of 0.899 with PLSR were obtained. The highest fits were obtained for compounds of the anthocyanin family with mean R2P of 0.974 (XGBR) and 0.954 (PLSR), respectively, while lower fits were found for flavan-3-oles with R2P of 0.878 (XGBR) and 0.771 (PLSR), indicating compound effects due to extraction and chromatographic and spectral analysis methods affecting repeatability and quantification limits. In general, precise model fits were found for compounds > 10 mg/L with R2P between 0.929 and 0.992 (XGBR) and between 0.875 and 0.992 (PLSR). Supplementary, all individual compounds could be identified according to their family by spectral fingerprints. However, these multi-block data sets were also associated with significantly higher R2P (and lower RMSEP) compared to a single block evaluation of the fluorescence EEM or absorbance data only. By using mean-centering and an Extended Mixture Model filter the multi-block data sets fit robustly using both XGBR and PLSR without the need to apply secondary variable selection algorithms. We conclude that analyzing the A-TEEM data using the multi-block organization and the XGBR algorithm facilitates a robust prediction of the key phenolic compound concentrations that strongly influence the Chilean wine quality.


Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article


Doreen Schober

Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile,Adam Gilmore, HORIBA Instruments Inc. 20 Knightsbridge Rd., Piscataway, NJ 08854, USA Jorge Zincker, Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile Alvaro Gonzalez, Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile

Contact the author


quality, polyphenols, spectroscopy, a-teem, wine, machine learning


Related articles…

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite

Agronomical assessment of a vine « terroir » map: first results in the « AOC » Minervois region

Minervois is a vine region where the first detailed soil map was begun 30 years ago. In 2003, a new map was drawn plotting the soil-landscape associations. This map distinguishes 8 large soil units based on geology. The widest (called « marnes ») is the most complex : it is made of 57 sub-units, which leads to a high variability of the vine behaviour on this unit.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Organic recycled mulches in sustainable viticulture: assessment of spontaneous plants communities and weed coverage

In recent years, developing more efficient and sustainable viticulture management has been essential due to the impact of climate change in semiarid regions. For this reason, the use of recycled organic mulching (ROM) in the vineyard has become an interesting strategy to cope with water stress, isolated soil from extreme temperatures and improving soil humidity, control the presence of weeds and therefore reduce the inputs of herbicides and improve soil fertility. This work aimed to analyse the effect of three different organic mulches [straw (S), grape pruning debris (GPD) and spent mushroom compost (SMC)] and two traditional soil management techniques [herbicide (H) and interrow (IN)] on weed coverage and the spontaneous plant communities’ presence. Data sampling was collected throughout the vine vegetative cycle of 2021 in La Rioja, Spain. The different soil management techniques had a clear effect on weed coverage and his development during the vine vegetative cycle. SMC and H were the treatments with the highest and the lowest coverage percentage, respectively. IN had a delayed weed emergence at the beginning of the vine vegetative cycle, but finally it reached maximum values nearby SMC. GPD and S had similar effects on weed emergence, reaching 25-30% of the maximum coverage values. A total of 29 herbaceous species were identified during the vegetative cycle, some of them very isolated and occasional. Principal component analysis (PCAs) showed a good association between spontaneous species and treatments, furthermore, specific species-treatment associations were found. Moreover, three clear groups of herbaceous communities were identified by cluster analysis. This study provides interesting information about the effect of different alternative soil management on herbaceous plant coverage and weed species communities which could contribute to making more sustainable viticulture.