Macrowine 2021
IVES 9 IVES Conference Series 9 Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Abstract

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management. Objective of this work was to develop a rapid analysis method using the Absorbance-Transmission and fluorescence Excitation-Emission Matrix (A-TEEM) technique. Polyphenols exhibit characteristic and high fluorescence quantum yields, which makes them highly suitable for this technique. The method’s automatic real-time Inner Filter Effect (IFE) correction allows the quantification of minor compounds (Gilmore et al., 2016). IFE-corrected fluorescence EEM data and the absorbance data were combined, and the spectral data were regressed against the concentrations of 34 anthocyanins, flavan-3-ols, tannins, polymeric pigments, flavonols and hydroxycinnamic acids measured independently by HPLC-DAD and UV-vis. The study focused on comparing Partial Least Squares Regression (PLSR) and Extreme Gradient Boost Regression (XGBR) for the single- (fluorescence EEM or absorbance) and multi- (combined) block data. The calibration set comprised 1133 files acquired from 126 diverse experimental and commercial wines. Validation was carried out on two data sets, first by a 14% randomized sample split from the calibration data keeping instrument replicates together, and thereafter by another independent set of 96 files from 16 wines. As a general trend, validation of the multi-block data models with independent data using XGBR, compared to PLSR, yielded higher prediction correlation coefficients (R2P) and lower Root Mean Square Errors for Prediction (RMSEP). Considering all 34 compound fits, mean R2P of 0.947 with XGBR and of 0.899 with PLSR were obtained. The highest fits were obtained for compounds of the anthocyanin family with mean R2P of 0.974 (XGBR) and 0.954 (PLSR), respectively, while lower fits were found for flavan-3-oles with R2P of 0.878 (XGBR) and 0.771 (PLSR), indicating compound effects due to extraction and chromatographic and spectral analysis methods affecting repeatability and quantification limits. In general, precise model fits were found for compounds > 10 mg/L with R2P between 0.929 and 0.992 (XGBR) and between 0.875 and 0.992 (PLSR). Supplementary, all individual compounds could be identified according to their family by spectral fingerprints. However, these multi-block data sets were also associated with significantly higher R2P (and lower RMSEP) compared to a single block evaluation of the fluorescence EEM or absorbance data only. By using mean-centering and an Extended Mixture Model filter the multi-block data sets fit robustly using both XGBR and PLSR without the need to apply secondary variable selection algorithms. We conclude that analyzing the A-TEEM data using the multi-block organization and the XGBR algorithm facilitates a robust prediction of the key phenolic compound concentrations that strongly influence the Chilean wine quality.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Doreen Schober

Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile,Adam Gilmore, HORIBA Instruments Inc. 20 Knightsbridge Rd., Piscataway, NJ 08854, USA Jorge Zincker, Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile Alvaro Gonzalez, Center for Research and Innovation, Viña Concha y Toro, Ruta k-650 km 10, Pencahue, Región de Maule, Chile

Contact the author

Keywords

quality, polyphenols, spectroscopy, a-teem, wine, machine learning

Citation

Related articles…

Prospects for enlarging of microzone Manavi in the East Georgia

The experimental studies conducted in the eastern Georgia in Sagarejo administrative district on the foothills of the southern slope of Tsiv-Gombori range reveal the possibility of enlarging Manavi traditional specific zone to the north-west (from Giorgitsminda to Khashmi), at 500-750 m above sea level.

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

Foliar application of specific inactivated yeast to enhance the varietal aroma precursors accumulation on cv. Traminer

The production of grapes with a balanced composition is one of the main goals that agronomists and oenologists pursue to produce premium quality wines.

Can minimal pruning be a strategy to adapt grape ripening to global warming?

Berry maturation in warm areas takes place very early, when temperatures are still high and favorable for carbohydrate synthesis and accumulation in the berries, but not as favorable for maintaining high titratable acidity or low pH, or for increasing berry polyphenol content. Different canopy management techniques have been proven to delay berry maturation at the expense of yield (severe canopy trimming, late spring pruning to induce sprouting of dormant buds, etc.). Minimal pruning delays berry ripening by highly increasing yield and by reducing the leaf area to fruit ratio.