Macrowine 2021
IVES 9 IVES Conference Series 9 Are my bubbles shrinking? A deeper look at oxygen desorption in wine

Are my bubbles shrinking? A deeper look at oxygen desorption in wine

Abstract

In the past decade, there has been an increasing amount of work dedicated to understanding micro-oxygenation in wine. Oxygen desorption into nitrogen gas is a similar process, but there has been little work focusing on this process and no work explicitly examining the effect that changes in wine components have on the process. The removal of excess dissolved oxygen from wine prior to bottling is commonly done in winemaking. A widely used method involves sparging nitrogen through the wine, in a process known as desorption. An indicator of the rate of oxygen desorption is the oxygen volumetric mass transfer coefficient (kla), which can be determined experimentally. The aim of the study was to examine how temperature, superficial gas velocity, and ethanol and glycerol levels affected the kla of dissolved oxygen into nitrogen gas in an aqueous solution of ethanol and glycerol. For the experiment, ethanol and glycerol concentrations were varied between 9 and 15% v/v, and 5 and 25 g/L respectively. The temperature was varied between 10 and 20C. The superficial gas velocity was varied between 0.15 and 0.32 cm/s. The experiments were performed in a 15L bubble column with a stone sparger. Before each run, the column was sparged with air in order to saturate the solution. Nitrogen was sparged until the concentration of oxygen was below 0.1 mg/L. DO levels were measured with an oxygen probe. The mean bubble size was determined using a high speed camera. The results showed that in the ranges tested, ethanol and glycerol concentration had no effect on the kla. A strong correlation was shown between superficial gas velocity, temperature and the kla The kla varied between 0.0139 and 0.0236s^-1. It was expected that the varying ethanol and glycerol concentrations would have an effect as the physico-chemical properties changed. Consequently an experiment was done in which ethanol concentration was incrementally increased from 0 to 10% v/v. It was found that raising the ethanol concentration to 0.1% increased the kla significantly relative to water. Beyond this the kla did not increase significantly. It was found that at ethanol concentrations of 0 to 0.02% the mean bubble size was nearly 2 times greater than at 0.05%. This suggests that the rise in kla is as a result of smaller bubbles. Preliminary tests performed on white wine showed that the kla was lower than in the ethanol/glycerol solutions under the same conditions. The kla range was 0.0094 and 0.012 s^-1 at 10 and 20 C respectively. The use of an aqueous solution of ethanol and glycerol overestimates the oxygen desorption rate in wine. This indicates that other unexamined properties within wine have a significant effect on kla. Oxygen desorption is significantly improved with the introduction of 0.05 % ethanol. Examining how wine proteins, acids and phenols affect the oxygen kla may give a better estimate of the desorption process in wine.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Steven Sutton

Stellenbosch University,Prof. Wessel Du Toit, Stellenbosch University Prof. Robbie Pott, Stellenbosch University

Contact the author

Keywords

oxygen desorption, wine processing, volumetric mass transfer coefficient, nitrogen sparging, wine sparging, micro-oxygenation keyword3)

Citation

Related articles…

Guard cell metabolism – A key for regulating drought resilience?

In view of increasing drought frequencies due to climate change, enhancing grapevine resilience to water scarcity has become vital for sustainable viticulture.

“Terroir” and climate change in Franconia / Germany

Franconia which is a “cool climate” winegrowing region is well known for its fruity white wines. The most common grape cultivars are Silvaner and Mueller-Thurgau.

Effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine

In this video recording of the IVES science meeting 2023, Fernando Zamora (Department of biochemistry and biotechnology, Faculty of oenology, Universitat Rovira i Virgili, Spain) speaks about the effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine. This presentation is based on an original article accessible for free on OENO One.

Deciphering the color of rosé wines using polyphenol targeted metabolomics

The color of rosés wines is extremely diverse and a key element in their marketing. It is due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making.

Benefits and risks of the utilization of grape pomace as organic fertilizers

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer