Macrowine 2021
IVES 9 IVES Conference Series 9 Are my bubbles shrinking? A deeper look at oxygen desorption in wine

Are my bubbles shrinking? A deeper look at oxygen desorption in wine

Abstract

In the past decade, there has been an increasing amount of work dedicated to understanding micro-oxygenation in wine. Oxygen desorption into nitrogen gas is a similar process, but there has been little work focusing on this process and no work explicitly examining the effect that changes in wine components have on the process. The removal of excess dissolved oxygen from wine prior to bottling is commonly done in winemaking. A widely used method involves sparging nitrogen through the wine, in a process known as desorption. An indicator of the rate of oxygen desorption is the oxygen volumetric mass transfer coefficient (kla), which can be determined experimentally. The aim of the study was to examine how temperature, superficial gas velocity, and ethanol and glycerol levels affected the kla of dissolved oxygen into nitrogen gas in an aqueous solution of ethanol and glycerol. For the experiment, ethanol and glycerol concentrations were varied between 9 and 15% v/v, and 5 and 25 g/L respectively. The temperature was varied between 10 and 20C. The superficial gas velocity was varied between 0.15 and 0.32 cm/s. The experiments were performed in a 15L bubble column with a stone sparger. Before each run, the column was sparged with air in order to saturate the solution. Nitrogen was sparged until the concentration of oxygen was below 0.1 mg/L. DO levels were measured with an oxygen probe. The mean bubble size was determined using a high speed camera. The results showed that in the ranges tested, ethanol and glycerol concentration had no effect on the kla. A strong correlation was shown between superficial gas velocity, temperature and the kla The kla varied between 0.0139 and 0.0236s^-1. It was expected that the varying ethanol and glycerol concentrations would have an effect as the physico-chemical properties changed. Consequently an experiment was done in which ethanol concentration was incrementally increased from 0 to 10% v/v. It was found that raising the ethanol concentration to 0.1% increased the kla significantly relative to water. Beyond this the kla did not increase significantly. It was found that at ethanol concentrations of 0 to 0.02% the mean bubble size was nearly 2 times greater than at 0.05%. This suggests that the rise in kla is as a result of smaller bubbles. Preliminary tests performed on white wine showed that the kla was lower than in the ethanol/glycerol solutions under the same conditions. The kla range was 0.0094 and 0.012 s^-1 at 10 and 20 C respectively. The use of an aqueous solution of ethanol and glycerol overestimates the oxygen desorption rate in wine. This indicates that other unexamined properties within wine have a significant effect on kla. Oxygen desorption is significantly improved with the introduction of 0.05 % ethanol. Examining how wine proteins, acids and phenols affect the oxygen kla may give a better estimate of the desorption process in wine.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Steven Sutton

Stellenbosch University,Prof. Wessel Du Toit, Stellenbosch University Prof. Robbie Pott, Stellenbosch University

Contact the author

Keywords

oxygen desorption, wine processing, volumetric mass transfer coefficient, nitrogen sparging, wine sparging, micro-oxygenation keyword3)

Citation

Related articles…

Relation entre les caractéristiques des fromages d’Appellation d’Origine Contrôlée et les facteurs de production du lait

Les fromages d’Appellation d’Origine Contrôlée (AOC) représentent un enjeu économique important pour la filière laitière (11 % des fromages produits en France sont des fromages d’AOC, et dans certaines régions de montagne, cette proportion dépasse 50 %). Les spécificités de ces fromages et leurs liaisons avec les caractéristiques du terroir constituent un système complexe où interagissent en particulier la technologie fromagère et les caractéristiques des laits (composition chimique en particulier). Ces dernières dépendent elles-mêmes des caractéristiques des animaux (origine génétique, facteurs physiologiques, état sanitaire) et de leur mode de conduite (alimentation, hygiène, traite…) (fig. 1). L’influence de ces facteurs de production (alimentation et type d’animal en particulier) sur les caractéristiques des fromages est fréquemment mise en avant par les fromagers, sur la base d’observations empiriques. Il existe cependant très peu de travaux expérimentaux sur le sujet, en raison, entre autres, de la difficulté de séparer correctement les effets propres de ces facteurs d’amont de ceux liés à la technologie fromagère.

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

Recent advances in measuring, estimating, and forecasting grapevine yield and quality

Grapevine yield and fruit quality are two major drivers of input allocation and, ultimately, revenue for grape producers. Because yield and fruit quality vary substantially from year-to-year and within a single block, opportunities exist for optimization via precision management activities that could lead to more profitable and sustainable grape production. Here, we review recent advances in the techniques and technology used to measure, estimate, and forecast grapevine yield and fruit quality. First, we discuss direct “measurement” of yield and quality (i.e. ground-truth data generation), with an emphasis on potential for scalability and automation. Second, we discuss technology and techniques that do not directly measure yield and quality, but use correlated measurements for their estimation.