Macrowine 2021
IVES 9 IVES Conference Series 9 Development of a new commercial phenolic analysis method for red grapes

Development of a new commercial phenolic analysis method for red grapes

Abstract

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines. The wine industry uses a variety of commercial phenolic assays to determine phenolic maturity in red grapes. Some of these assays, however, are dated more than 20 years ago and do not always accurately reflect wine phenolic content from grape phenolic extracts. The aim of this study is to develop an adjusted phenolic sample preparation and extraction protocol so it can be used in commercial wineries and/or laboratories.In this study, six grape cultivars (Pinotage, Cabernet-Sauvignon, Merlot, Shiraz, Cinsualt and Pertit Verdot) were collected from 42 different vineyards from across 15 different farms. Representative samples were taken from the grapes of each block. Grape extractions were done in duplicates using four different methods namely Glories, Iland, Modified Iland and a custom made Machine crushed method. The Glories, Iland and modified Iland methods produces homogenized grapes, while the machine crushed method uses grape samples where only the skins were crushed. The modified Iland and machine crushed extraction methods were exposed to microwave treatment and extracted in a 50% alcohol solution for 30 min and 1 hour and 3h, 24h and 40h, respectively.Wines were made from every grape samples. Phenolic analyses were done for anthocyanins, tannins, total phenols index and colour density on the grapes and wines. Variation in the phenolic composition of the grapes where the different extraction methods were observed. Correlations between grapes and wines phenolic data with the different grape extraction methods will also be shown.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Asiphe Makalisa

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University,Kiera Lambrecht, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University Jose Luis Aleixandre Tudo, Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos and Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology Keren Bindon, Australian Grape and Wine Research Institute, Adelaide Wessel du Toit, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University

Contact the author

Keywords

extraction, phenolic assay, red grapes, tannins

Citation

Related articles…

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible

Membrane contactor: a sustainable technology to remove dissolved oxygen from wine and preserve wine aroma

Oxygen management in wine is one of the most significant challenging issues for winemakers.

SO2 consumption in white wine oxidation: approaches to low input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in maintaining wine quality during its shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.

The influence of vine row position in terraced Merlot vineyards on water deficit and polyphenols – case study in the Vipava Valley, Slovenia

A study was conducted in the Vipava Valley (Slovenia) to understand the effects of positioning rows of Merlot (Vitis vinifera L.) vines on terraces on plant available water, yield, and grape composition