Macrowine 2021
IVES 9 IVES Conference Series 9 Development of a new commercial phenolic analysis method for red grapes

Development of a new commercial phenolic analysis method for red grapes

Abstract

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines. The wine industry uses a variety of commercial phenolic assays to determine phenolic maturity in red grapes. Some of these assays, however, are dated more than 20 years ago and do not always accurately reflect wine phenolic content from grape phenolic extracts. The aim of this study is to develop an adjusted phenolic sample preparation and extraction protocol so it can be used in commercial wineries and/or laboratories.In this study, six grape cultivars (Pinotage, Cabernet-Sauvignon, Merlot, Shiraz, Cinsualt and Pertit Verdot) were collected from 42 different vineyards from across 15 different farms. Representative samples were taken from the grapes of each block. Grape extractions were done in duplicates using four different methods namely Glories, Iland, Modified Iland and a custom made Machine crushed method. The Glories, Iland and modified Iland methods produces homogenized grapes, while the machine crushed method uses grape samples where only the skins were crushed. The modified Iland and machine crushed extraction methods were exposed to microwave treatment and extracted in a 50% alcohol solution for 30 min and 1 hour and 3h, 24h and 40h, respectively.Wines were made from every grape samples. Phenolic analyses were done for anthocyanins, tannins, total phenols index and colour density on the grapes and wines. Variation in the phenolic composition of the grapes where the different extraction methods were observed. Correlations between grapes and wines phenolic data with the different grape extraction methods will also be shown.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Asiphe Makalisa

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University,Kiera Lambrecht, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University Jose Luis Aleixandre Tudo, Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos and Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology Keren Bindon, Australian Grape and Wine Research Institute, Adelaide Wessel du Toit, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University

Contact the author

Keywords

extraction, phenolic assay, red grapes, tannins

Citation

Related articles…

Modeling island and coastal vineyards potential in the context of climate change

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives.

Effects of soil and climate on wine style in the Breede River Valley of South Africa: Sauvignon blanc and Cabernet-Sauvignon

Les effets du sol et du climat sur le style de vin ont été évalués pour des vignes irriguées à deux endroits différents de la vallée de la Breede, en Afrique du Sud. L’un des 2 endroits est cependant plus froid que l’autre, principalement en raison de températures nocturnes plus basses.

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium.

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules

Wine by-products valorisation by green chemistry methods: Impact of the extraction process on the structure, functionalities and activity of the extracted molecules