Macrowine 2021
IVES 9 IVES Conference Series 9 Grape seed flavanols extraction and mechanical-acoustic properties as influenced by maceration time and ethanol content

Grape seed flavanols extraction and mechanical-acoustic properties as influenced by maceration time and ethanol content

Abstract

AIM: Grape flavanols are involved in wine quality markers such as in-mouth sensations and colour stability. In particular, seed flavanols are characterized by low molecular weight and high galloylation ratio, which are correlated respectively with bitterness and astringency. Their release during maceration is derived from the seed hydration and the ethanol-driven disassembly of cell walls that is promoted by maceration time. In this study, acoustic and mechanical parameters were tested to investigate the effect of maceration length and ethanol content on seed flavanols extraction. The magnitude of the changes observed in seeds hardness in the different maceration conditions was evaluated in the attempt to establish correlations with the extracted compounds.

METHODS: Pinot noir seeds were macerated in a wine-like solution (pH 3.40, 5 g/L tartaric acid) with different ethanol content (0, 5, 10, 15 and increasing addition up to 15% v/v). After 3, 7, and 10 days, total polyphenols (A280), condensed tannins (methylcellulose assay), flavanol composition as mean degree of polymerization (mDP), and monomeric content by HPLC were determined in the resulting solutions. Mechanical and acoustic parameters of macerated seeds were evaluated through compression test by instrumental texture analysis.

RESULTS: Seed tannins extraction was influenced by both ethanol and maceration time, in different extent depending on the specific compound. In all macerations, an initial seed deformation together with a loss of elasticity was reported. As well, seed hardness (as seed break force, N) increased in all macerations except for 15% ethanol samples that showed a significant decrease. In accordance, some acoustic parameters (as average acoustic energy, dB) increased significantly during maceration, and this last parameter was positively correlated with total polyphenols and condensed tannins extractions.

CONCLUSIONS:

Initial ethanol content and maceration length influenced flavanols richness and composition in the maceration extract. However, limited differences in both phenolic composition and texture parameters were found between the samples with no ethanol content and gradually-increasing alcohol strength

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Alessandra Paissoni

University of Torino, Italy,Susana RÍO SEGADE, University of Torino, Italy Luca ROLLE, University of Torino, Italy Simone GIACOSA, University of Torino, Italy

Contact the author

Keywords

grape seeds, tannins, maceration, texture analysis, mechanical-acoustic properties

Citation

Related articles…

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

Comparison between non-Saccharomyces yeasts for the production of Nero d’Avola wine

Wine production with non-Saccharomyces yeasts is getting larger application due to the positive impact of these yeasts on wine composition. Previous studies showed notably differences in chemical composition of Merlot wines obtained with Torulaspora delbrueckii.

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.