Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

Abstract

Different studies have demonstrated that the application of ultrasounds (US) to crushed grapes improves chromatic characteristics of the wines (1,2), increases their polysaccharide content (3) and some aroma compounds are also favored (4,5). The US facilitate the extractability of phenolic compounds from grapes to must-wine, due to the erosion of the skin cell walls caused by the ultrasound-generated cavitation bubbles. It is also known that phenolic extractability increases during grape ripening due to the natural degradation of the cell walls during a maturation progresses, the cell walls being thicker and more rigid in the less ripen grapes. Our objective is to determine if the application of US to grapes of different maturity level leads to the same positive outcome as regards chromatic, phenolic and aroma compounds and sensory properties. Moreover, sometimes, during the late ripening status and due to adverse climatic conditions, some level of botrytis contamination may appear in the grapes and the effect of US in this partially botrytised harvest have not been discussed. The trials were carried out with Syrah grapes at two different ripening levels (12 and 14ºBaume) and with the most ripen grapes, grapes with two different sanitary status were treated, healthy grapes and 25% botritized grapes, treating 200 kg of each type of grapes with a semi-industrial scale high power ultrasound equipment working a sonication frequency of 30kHz. Physicochemical and chromatic parameters were analyzed by spectrophotometry and high-performance liquid chromatography and volatile compounds by gas chromatography-mass spectrometry. Also a sensory analysis of the wines at the moment of bottling was conducted. The results showed that, independently of the grapes ripening or sanitary status, the application of US to crushed grapes led to wines with improved chromatic characteristics, the volatile compounds concentration being less affected, although the sensory analysis showed clear differences, the wines made from sonicated grapes being preferred and reaching higher scores in most of the sensory parameters evaluated. In conclusion, this study on a semi-industrial scale demonstrated that the application of US to Syrah grapes improves the organoleptic characteristics in wine. The positive effect also observed in the less ripen grapes lead us to consider the sonication of the grapes as a tool for reducing wine alcohol content by harvesting less ripen grapes since the lack of natural phenolic extractability may be compensated by the sonication of the grapes.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Encarna Gómez-Plaza

University of Murcia,Andrea Osete-Alcaraz, University of Murcia Paula Pérez-Porras, University of Murcia Pilar Martínez-Pérez, University of Murcia Ricardo Jurado, Agrovin S.A. Ana Belén Bautista-Ortín, University of Murcia

Contact the author

Keywords

wine, grape, ultrasounds, ripening, phenolic compounds, aroma compounds, sensory analysis, botrytis

Citation

Related articles…

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Early development of potential wine styles for PIWI varieties in grapevine breeding

In a framework in which climate change is increasingly recognized as a critical global challenge, traditional viticulture must be reconsidered in order to provide better solutions for future needs [1].

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018)

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.

Viticultural characterisation of soils from triassic period at Beaumes-de-Venise (Côtes du Rhône, France)

Wineries of Beaumes-de-Venise area make their best red wines with grapes from the “Triassic terroir”. This « terroir » is characterized by soils from the Triassic period. These specific soils are complex and quite heterogeneous. They originate from an eventful geological history to keep in mind to understand soils geographical distribution.