Macrowine 2021
IVES 9 IVES Conference Series 9 The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

Abstract

Different studies have demonstrated that the application of ultrasounds (US) to crushed grapes improves chromatic characteristics of the wines (1,2), increases their polysaccharide content (3) and some aroma compounds are also favored (4,5). The US facilitate the extractability of phenolic compounds from grapes to must-wine, due to the erosion of the skin cell walls caused by the ultrasound-generated cavitation bubbles. It is also known that phenolic extractability increases during grape ripening due to the natural degradation of the cell walls during a maturation progresses, the cell walls being thicker and more rigid in the less ripen grapes. Our objective is to determine if the application of US to grapes of different maturity level leads to the same positive outcome as regards chromatic, phenolic and aroma compounds and sensory properties. Moreover, sometimes, during the late ripening status and due to adverse climatic conditions, some level of botrytis contamination may appear in the grapes and the effect of US in this partially botrytised harvest have not been discussed. The trials were carried out with Syrah grapes at two different ripening levels (12 and 14ºBaume) and with the most ripen grapes, grapes with two different sanitary status were treated, healthy grapes and 25% botritized grapes, treating 200 kg of each type of grapes with a semi-industrial scale high power ultrasound equipment working a sonication frequency of 30kHz. Physicochemical and chromatic parameters were analyzed by spectrophotometry and high-performance liquid chromatography and volatile compounds by gas chromatography-mass spectrometry. Also a sensory analysis of the wines at the moment of bottling was conducted. The results showed that, independently of the grapes ripening or sanitary status, the application of US to crushed grapes led to wines with improved chromatic characteristics, the volatile compounds concentration being less affected, although the sensory analysis showed clear differences, the wines made from sonicated grapes being preferred and reaching higher scores in most of the sensory parameters evaluated. In conclusion, this study on a semi-industrial scale demonstrated that the application of US to Syrah grapes improves the organoleptic characteristics in wine. The positive effect also observed in the less ripen grapes lead us to consider the sonication of the grapes as a tool for reducing wine alcohol content by harvesting less ripen grapes since the lack of natural phenolic extractability may be compensated by the sonication of the grapes.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Encarna Gómez-Plaza

University of Murcia,Andrea Osete-Alcaraz, University of Murcia Paula Pérez-Porras, University of Murcia Pilar Martínez-Pérez, University of Murcia Ricardo Jurado, Agrovin S.A. Ana Belén Bautista-Ortín, University of Murcia

Contact the author

Keywords

wine, grape, ultrasounds, ripening, phenolic compounds, aroma compounds, sensory analysis, botrytis

Citation

Related articles…

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

Ceramic imprint in wine: influence of hydraulic ratio on ceramic dissolution and wine pH in amphorae systems

This interaction is primarily due to an acidic attack on the ceramic by the wine. It results in (1) the dissolution of the ceramic into the wine and the release of a wide variety of elements; and (2) an increase of the wine pH. The extent of these effects depends on the mineralogical and chemical composition of the ceramic, as well as the hydraulic ratio of the ceramic-wine system (the term hydraulic ratio (ρ) defines here the volume of wine over the surface area of the ceramic in contact with the wine).

Ten years soil diagnosis in vineyards, with particularly analysis of organic and microbial mass and measuring their evolution

Since 1996, we study the soil in viticulture, specially in the South of France. In the field, we delimit soil units and observe soil profiles and take samples to analyse its physical, mineral, organic and microbial mass composition

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

Methodology and zoning of A.O.C. natural soils. Example of “Pic Saint-Loup”

Les travaux menés, dans le cadre du programme départemental pour la connaissance et la valorisation des terroirs viticoles, sur l’aire A.O.C. Coteaux du Languedoc / Pic Saint-Loup ont permis d’appliquer à l’échelle d’une Appellation d’Origine Contrôlée (13 communes), une méthodologie d’étude axée sur les aspects sol/climat/topographie qui concourent à l’identification des terroirs naturels, facteurs de typicité des vins.