Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of short-time skin maceration combined with enzyme treatment on the volatile composition of musts from fresh and withered fiano winegrapes

Influence of short-time skin maceration combined with enzyme treatment on the volatile composition of musts from fresh and withered fiano winegrapes

Abstract

AIM: The increasing market competitiveness is promoting the production of special dry wines with distinctive characteristics, obtained either from minor winegrape varieties and/or the inclusion of partially dehydrated grapes. With the aim of taking advantage of the grape quality traits in terms of aroma potential, short-time skin contact prior pressing in combination with the use of exogenous enzymes can facilitate the release of volatile organic compounds (VOCs) into the grape must. In addition, the possible presence of glycosidase activity enhances the hydrolysis of odourless glycosidically-bound precursors, which have a particular importance for non-aromatic grape varieties. [1,2] In this study, the effect of eight enzyme treatments with different single activity during short-term pre-fermentative maceration was investigated on the volatile composition of musts, obtained from both fresh and withered winegrapes cv. ‘Fiano’.

METHODS: The study was carried out on fresh or partially dehydrated (20% of weight loss) ‘Fiano’ white winegrapes from Campania region (southern Italy). For each sample, twenty-seven berry sets of 500 g each were randomly selected and crushed in presence of 10 mg/kg of potassium metabisulphite. Then, three berry sets were individually treated with pectin lyase (PL), polygalacturonase (PG), pectin methylesterase (PME), xylanase (XYL), arabinase (ARA), protease (PRO), β-glucanase (GLN), or β-glucosidase (GLU) enzymes at a dose of 10 mg/kg, homogenized and subjected to pre-fermentative maceration for 13 h at 12 °C. The other three berry sets were treated similarly but without enzyme addition (control). Subsequently, the musts obtained were separated from the skins and used for the determination of free and glycosidically-bound VOCs using solid-phase extraction followed by GC-MS analysis [3].

RESULTS: Regarding the free volatile fraction of musts, few compounds were influenced by the different enzyme treatments tested. This effect appeared to be more evident for glycosylated volatile compounds, for which the concentration of total compounds, aromatic alcohols, C6 alcohols, and certain terpenes (nerol and geraniol) significantly prevailed in musts from fresh grapes treated with PG. Moreover, samples from withered Fiano grapes treated with PG and ARA were characterized by higher contents of terpenes (cis-8-hydroxylinalool, nerol, geraniol, and α-terpineol), C6 alcohols (trans-2-hexenol and 1-hexenol), and benzenoids (eugenol).

CONCLUSIONS: 

 The addition of enzymes during short-term pre-fermentative maceration resulted to have effect mainly on the glycosylated volatile fraction of the musts obtained from fresh and withered grapes. In particular, exogenous enzyme activities such as PG exhibit major influence on the volatile profile of musts derived from fresh and withered ‘Fiano’ grapes, which could contribute to enhance the sensory perceived aroma of the resulting wines.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Stefano Boz

University of Torino, Italy,Susana RÍO SEGADE, University of Torino, Italy Stefano BOZ, University of Torino, Italy Mattia MALABAILA, University of Torino, Italy Domen ŠKRAB, University of Torino, Italy Maria Alessandra PAISSONI, University of Torino, Italy Simone GIACOSA, University of Torino, Italy Luca ROLLE, University of Torino, Italy

Contact the author

Keywords

 volatile compounds; enzymes; pre-fermentative maceration; fiano winegrapes

Citation

Related articles…

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

Staying hydrated – not easy when it’s hot!

Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions

Climate change projections in serbian wine-growing regions

Changes in bioclimatic indices in wine-growing region of Serbia are analyzed under the RCP 8.5 IPCC scenario.

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.