IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

Abstract

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time. This is due to the fact that phenolic and technological maturities do not coincide at the time of harvest in these climates, in contrast to colder viniculture zones. As a consequence, the colour of wines decreases after months of storage within bottles or barrels due to copigmentation processes being hampered by a shortage of pigments and copigments.
This study has focused on improving the colour stability of red wines elaborated in warm climates by adding an enzymatic hydrolysate of defatted grape seed meal six months after fermentation of Syrah grapes cultivated in “Condado de Huelva” Designation of Origin (Spain). This defatted meal comes from the industrial processing of grape pomace, contributing to the reuse of this residue as a by-product. Two different types of defatted grape seed meal were used (from red and white grapes), which protein fraction was extracted and further submitted to enzymatic hydrolysis with Alcalase under alkaline conditions. Hydrolysis was carried out at two different times, 1 and 4 h, to obtain peptides of high and low molecular weight, which were added to the wine at two different concentrations: 1 g/L and 3 g/L, in triplicate. Differential tristimulus colorimetry (L*, C*ab, hab, ΔE*ab), copigmentation, molecular weight distribution, and polyphenolic content (HPLC-DAD) were studied in wines every month along six months of time evolution.
The addition of 3 g/L peptides from 1-hour hydrolysis showed a colour stabilization effect on red wines regardless of the grape variety, in the light of the higher values of chroma (C*ab) and copigmentation, even though the total anthocyanin content decreased, which tends to occur naturally during the evolution of any wine. However, the addition of peptides from 4-hour hydrolysis of the red variety, regardless of their concentration, provoked a lightening effect of red wines, evidenced by higher values of L* and lower of C*ab. In contrast, these wines had visually perceptible colour differences (ΔE*ab > 3), mainly qualitative due to the higher values of hue (hab), but sensorially acceptable. In conclusion, the implementation of wines with peptidic hydrolysates from grape seed meal residue could be a promising technique for oenological industry.

 Acknowledgments:

We thank FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación (Project AGL2017-84793-C2) for financial support.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Mora-Garrido Ana Belén1, Escudero-Gilete M. Luisa1, González-Miret M. Lourdes1, Hereida Francisco J.1 and Cejudo-Bastante María Jesús1

1Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla

Contact the author

Keywords

peptidic grape seed hydrolysates, differential tristimulus colorimetry, polyphenolic compounds, copigmentation, warm climate

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Using a grape compositional model to predict harvest time and influence wine style

Linking wine composition to fruit composition is difficult due to the numerous biochemical pathways and substrate transformations that occur during fermentation

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

The Tokaj Kereskedőház Ltd. is the only state owned winery in Hungary. The company is integrating grapes for wine production from 1100 hectares of vineyard, which consist of 3500 parcels with average size of 0,3 hectares, owned by about 500 families of the region. The vineyards are unevenly spread in total 27 village of Tokaj region.

LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

Oxygen is a key player in oenology, since its effects can be a blessing, benefiting wine quality, or a curse causing irreversible damage.