Macrowine 2021
IVES 9 IVES Conference Series 9 The anthocyanin profile of galician endangered varieties. A tool for varietal selection

The anthocyanin profile of galician endangered varieties. A tool for varietal selection

Abstract

AIM: The current loss of genetic grapevine diversity is mainly due to the reduced number of varieties used for making wine. A way of preserved endangered varieties is the establishment of germplasm banks. The anthocyanin profile is a key factor in determining the oenological potential of red wine grape varieties. Thus, this work analyses the anthocyanin profiles of 29 varieties from the germplasm bank located in ¨Estación de Viticultura y Enología de Galicia¨ (EVEGA), Ourense (Galicia, Northwest Spain) in 2018 and 2019 seasons. 

METHODS: At harvest, grapes were picked up and the anthocyanin substances were extracted and analyzed by HPLC (1, 2). Results were subjected to statistical analysis, ANOVA (factor variety) and Principal Component Analysis (PCA).

RESULTS: The anthocyanins were identified as the monoglucoside (GLU) acetylglucoside (AC) and p-coumaroylglucoside forms (CM) of cyanidin (Cy), delphinidin (Dp), malvidin (Mv), pelargonidin (Pel), peonidin (Pn) and petunidin (Pt). Sixteen compounds were identified and quantified (mg/Kg of berry fresh weight, FW). Significant diferences between varieties (p<0.001) were found for the biannual means of all compounds. MvG had the highest content in all varieties analyzed, with the exception of Zamarrica, Xafardán, Moscatel de Hamburgo and Brancellao. Respect to the rest of varieties, Sousón, Castañal, Ferrón, Espadeiro and Caíño Bravo (1832, 1323, 1327, 1173 and 1097 mg/Kg FW respectively) showed the highest contents of Total Anthocyanin. It is worth noting that these varieties belong to the same genetic population (3).These contents were higher than those found in Mencia (643 mg/Kg FW) and Tempranillo (891 mg/Kg FW), varieties widely cultivated in Galicia and Spain respectively.

Application of Principal Component Analysis (PCA) to experimental data showed a good separation of varieties according to the anthocyanin profile. (71.32 and 74.22 % of the total variance in 2018 and 2019 respectively). PCA also showed a group including Ferrón, Sousón, Castañal and Espadeiro varieties related to high contents of ΣGLU, ΣDel, ΣPet and ΣMal

CONCLUSION

 Results demonstrated a high degree of anthocyanin profile difference between the varieties analyzed. Due to their anthocyanidin profile some of these varieties could play an important role in the red winery industry.

 

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ángela Díaz Fernández

Viticulture and Oenology Station of Galicia [EVEGA] (Ourense, Galicia- Spain), Viticulture and Oenology Station of Galicia (EVEGA), Ourense (Galicia)  2 Technological Agri-Food Institute of Extremadura (CICYTEX, INTAEX), Badajoz (Extremadura).

Contact the author

Keywords

Vitis vinifera, red grapevine, germplasm bank, anthocyanidine

Citation

Related articles…

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

A sundial vineyard: impact of row density and orientation on cv. Cabernet-Sauvignon physiology and grape composition, insights to face a climate change scenario

An experimental vineyard with a radial array was planted in 2018, to provide valuable information on the relationship between orientation and planting density on plant physiology and cluster microclimate, and the consequent impacts on grape secondary metabolites, including aromas and polyphenols.

First characterization of Torrontés Riojano in la Rioja, Argentina: impact of pruning intensity on vine vigor and grape production 

Pruning is one essential vineyard management activity whose main purpose is to regulate plant growth and vigour, modulating berry size, and consequently, wine quality. In Chilecito, La Rioja Province, Argentina, Torrontés Riojano stands as the only autochthonous variety for winemaking, yielding golden and aromatic berries and distinctive muscatel-tasting wines. This white cultivar, resulting from the natural cross between Moscatel de Alejandría x Criolla Chica, is traditionally trained in “parral” (horizontal trellis system), aimed to manage vigorous canopies. This project constitutes the first study on the influence of pruning intensity on Torrontés Riojano growth habit and berry quality.

Estudio comparativo del potencial enológico de dos varietales tintos cultivados en la isla de Tenerife

En el presente trabajo se ha realizado un estudio comparativo entre los varietales tintos Listán negro y Negramolle en la Denominación de Origen Tacoronte-Acentejo. Se han determinado durante dos años

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.