Macrowine 2021
IVES 9 IVES Conference Series 9 The anthocyanin profile of galician endangered varieties. A tool for varietal selection

The anthocyanin profile of galician endangered varieties. A tool for varietal selection

Abstract

AIM: The current loss of genetic grapevine diversity is mainly due to the reduced number of varieties used for making wine. A way of preserved endangered varieties is the establishment of germplasm banks. The anthocyanin profile is a key factor in determining the oenological potential of red wine grape varieties. Thus, this work analyses the anthocyanin profiles of 29 varieties from the germplasm bank located in ¨Estación de Viticultura y Enología de Galicia¨ (EVEGA), Ourense (Galicia, Northwest Spain) in 2018 and 2019 seasons. 

METHODS: At harvest, grapes were picked up and the anthocyanin substances were extracted and analyzed by HPLC (1, 2). Results were subjected to statistical analysis, ANOVA (factor variety) and Principal Component Analysis (PCA).

RESULTS: The anthocyanins were identified as the monoglucoside (GLU) acetylglucoside (AC) and p-coumaroylglucoside forms (CM) of cyanidin (Cy), delphinidin (Dp), malvidin (Mv), pelargonidin (Pel), peonidin (Pn) and petunidin (Pt). Sixteen compounds were identified and quantified (mg/Kg of berry fresh weight, FW). Significant diferences between varieties (p<0.001) were found for the biannual means of all compounds. MvG had the highest content in all varieties analyzed, with the exception of Zamarrica, Xafardán, Moscatel de Hamburgo and Brancellao. Respect to the rest of varieties, Sousón, Castañal, Ferrón, Espadeiro and Caíño Bravo (1832, 1323, 1327, 1173 and 1097 mg/Kg FW respectively) showed the highest contents of Total Anthocyanin. It is worth noting that these varieties belong to the same genetic population (3).These contents were higher than those found in Mencia (643 mg/Kg FW) and Tempranillo (891 mg/Kg FW), varieties widely cultivated in Galicia and Spain respectively.

Application of Principal Component Analysis (PCA) to experimental data showed a good separation of varieties according to the anthocyanin profile. (71.32 and 74.22 % of the total variance in 2018 and 2019 respectively). PCA also showed a group including Ferrón, Sousón, Castañal and Espadeiro varieties related to high contents of ΣGLU, ΣDel, ΣPet and ΣMal

CONCLUSION

 Results demonstrated a high degree of anthocyanin profile difference between the varieties analyzed. Due to their anthocyanidin profile some of these varieties could play an important role in the red winery industry.

 

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ángela Díaz Fernández

Viticulture and Oenology Station of Galicia [EVEGA] (Ourense, Galicia- Spain), Viticulture and Oenology Station of Galicia (EVEGA), Ourense (Galicia)  2 Technological Agri-Food Institute of Extremadura (CICYTEX, INTAEX), Badajoz (Extremadura).

Contact the author

Keywords

Vitis vinifera, red grapevine, germplasm bank, anthocyanidine

Citation

Related articles…

Le Pinot noir dans la zone AOC des “Colli Orientali del Friuli” (nord-est de l’Italie) : influence de la forme de taille sur les paramètres viticoles et œnologiques du raisin et du vin

Pinot noir is an interesting vat variety for the high quality products it provides in the most suitable areas. In France, the most important Pinot Noir growing areas are Burgundy, Champagne, Alsace and the Loire. In Italy, Pinot Noir is grown almost exclusively in the northern regions of Trentino-Alto Adige, Lombardy and Friuli-Venezia Giulia.

High-throughput direct monitoring of microbial resources for oenology by direct injection mass spectrometry

Microorganisms have been widely used in oenology since prehistoric times. Their metabolism significantly impacts many wine properties and is particularly essential for the production of flavor compounds, thereby affecting perceived wine quality.

Distribution analysis of myo and scyllo-inositol in natural grape must

s it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.