Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of yeast product addition and fermentation temperature on lipid composition and sensory of pinot noir wines

Effects of yeast product addition and fermentation temperature on lipid composition and sensory of pinot noir wines

Abstract

AIM: Firm tissues of grapes and yeast are the major sources of lipids in wine. Variation of yeasts and grape varieties could impact the concentration and composition of lipids in wine. Lipid metabolism is also affected by changes in fermentation temperature. The purpose of this study was to examine changes in lipid compositions and sensory in Pinot Noir wines in response to differences in fermentation temperature and addition of different types and amounts of yeast derivative products.

METHODS: Oregon Pinot noir grapes from 2019 were fermented at 16°C and 25°C. Following primary and malolactic fermentation, the yeast product Oenolees (Laffort, USA) was added to the wines. Treatments included single addition of Oenolees at different concentrations (0 g/L, 0.5 g/L, and 1.0 g/L). Bligh and Dyer lipid extraction method with a solvent mixture chloroform/methanol was used to extract total lipids in the experimental wines. Lipids extracted were subjected to lipidomic analysis using ultra-performance liquid chromatography (UPLC) to identify and analyze the lipid composition. The sensory of the final products was evaluated using triangle tests and descriptive analysis.

RESULTS: The results indicated that wine style and wine quality could be distinguished by lipid composition in wine. However, the taste and mouthfeel characteristics, sweetness, bitterness, acidity, viscosity, and drying, were not significantly different among the treatments.

 

CONCLUSIONS:

The wine processes of fermentation temperature and yeast product addition did not alter the lipid content of wine. While the low lipid concentration in the wine treatments resulted in no differences in the sensory study, there is much to understand about their role in compound interactions as wine ages and if this has an impact on wine mouthfeel. Lipids themselves may not have direct impacts on wine mouthfeel but there is still potential for interactions between lipids and other wine components, such as tannins, to alter wine mouthfeel perception

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Quynh Phan 

Oregon State University, Aubrey Dubois, James Osborne, Elizabeth Tomasino

Contact the author

Keywords

 wine mouthfeel perception, lipidomic profiling, wine chemistry, wine chemistry components, discrimination test

Citation

Related articles…

Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

We performed a DC resistivity monitoring experiment during eight months in 2003. Low, medium and high resolution measurements have been carried out at various locations of a vineyard. General apparent resistivity mapping evidences the spatial variations of the summer drying of the subsurface.

Kimmeridgian age in Chablis: a geological argument for the social building of a terroir

Situated at the beginning of the 20th century on the territory of the Chablis municipality, delimited according to specialists of the time to plots of “kimmeridgian” origin, the vineyard producing Chablis

Crowdsourced the assessment of wine rating: professional wine competition rating vs vivino rating

We evaluate wine ratings by comparing data from two crowdsourcing platforms – Vivino, which aggregates the opinions of a large number of wine lovers, and Global Wine Medal Rating, which aggregates the scores from more than 1030 international wine competitions since 2020.

Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Ochratoxin A (OTA) is a mycotoxin produced by several filamentous fungi infecting grape bunches (Penicillium and Aspergillus spp.), this toxin pass to must when grapes are crushed and later it is found in wine. Following the evaluations of the toxicity of OTA, European Commission Regulations have been promulgated introducing upper limits for OTA concentrations in various commodities (cereals, cereal products, dried vine fruit, coffee, wine, grape juice, baby foods and dietary foods for special medical purposes).

Rare earth elements distribution in grape berries

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements.