Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of yeast product addition and fermentation temperature on lipid composition and sensory of pinot noir wines

Effects of yeast product addition and fermentation temperature on lipid composition and sensory of pinot noir wines

Abstract

AIM: Firm tissues of grapes and yeast are the major sources of lipids in wine. Variation of yeasts and grape varieties could impact the concentration and composition of lipids in wine. Lipid metabolism is also affected by changes in fermentation temperature. The purpose of this study was to examine changes in lipid compositions and sensory in Pinot Noir wines in response to differences in fermentation temperature and addition of different types and amounts of yeast derivative products.

METHODS: Oregon Pinot noir grapes from 2019 were fermented at 16°C and 25°C. Following primary and malolactic fermentation, the yeast product Oenolees (Laffort, USA) was added to the wines. Treatments included single addition of Oenolees at different concentrations (0 g/L, 0.5 g/L, and 1.0 g/L). Bligh and Dyer lipid extraction method with a solvent mixture chloroform/methanol was used to extract total lipids in the experimental wines. Lipids extracted were subjected to lipidomic analysis using ultra-performance liquid chromatography (UPLC) to identify and analyze the lipid composition. The sensory of the final products was evaluated using triangle tests and descriptive analysis.

RESULTS: The results indicated that wine style and wine quality could be distinguished by lipid composition in wine. However, the taste and mouthfeel characteristics, sweetness, bitterness, acidity, viscosity, and drying, were not significantly different among the treatments.

 

CONCLUSIONS:

The wine processes of fermentation temperature and yeast product addition did not alter the lipid content of wine. While the low lipid concentration in the wine treatments resulted in no differences in the sensory study, there is much to understand about their role in compound interactions as wine ages and if this has an impact on wine mouthfeel. Lipids themselves may not have direct impacts on wine mouthfeel but there is still potential for interactions between lipids and other wine components, such as tannins, to alter wine mouthfeel perception

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Quynh Phan 

Oregon State University, Aubrey Dubois, James Osborne, Elizabeth Tomasino

Contact the author

Keywords

 wine mouthfeel perception, lipidomic profiling, wine chemistry, wine chemistry components, discrimination test

Citation

Related articles…

Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Temperature is a relevant parameter during vineyard development, affecting vine phenology and grape maturity. Moreover, the climate of the different Chilean valleys influences the varieties cultivated, the ripening period and the final quality of the wines. The use of growing degree days (GDD) is known worldwide for the study of climate in viticulture regions. However, little is known about the evolution of maturity and the sugar loading stop, based on this parameter.

Identification and characterization of polyphenols in fining precipitate

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries.

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Galicia est une région située dans le Nord-Ouest de l’Espagne avec une longe tradition de culture de la vigne. A jour d’oui la vigne occupe en Galicia presque 28.500 ha, desquelles 8.100 correspondent aux 5 zones ayant droit à l’appellation DO (« Denominación de Origen ») équivalent aux AOC françaises.