Macrowine 2021
IVES 9 IVES Conference Series 9 Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

Abstract

AIM: The Cape of Storms (also known as Cape of Good Hope) is renowned for harbouring a multitude of shipwrecks due to the inherent treacherous coastline and blistering storms. One such shipwreck is the English East Indiaman Colebrooke, wrecked in False Bay, South Africa, in 1778. A discovery on the shipwreck was a shipment of wine of unknown origin and style, possibly Madeira as it was known that the English East India Company often purchased wine from there but this was not mentioned in the ship’s log. As the wreck was exploited by treasure hunters, very little contextual information is known. To further expand the sample pool with more examples of old wine, we have included another sample recovered from the wreck of the SS Maori sunk in 1909. Additionally, three samples of (old) wines stored in vinotheque conditions were included: a Château d’Yquem (1918 vintage) and two Château Margaux (1984).

METHODS: A minimal volume of wine (<50 mL) was analysed using untargeted analyses (GC-MS, LC-HRMS and NMR spectroscopy), metals (ICP-MS/OES), and sugars and organic acids (HPLC-DAD-RID). Important volatile aroma compounds were identified by HS-SPME-GCMS and their identification confirmed using Wiley/NIST libraries and RI. A screening exercise was performed by experienced researchers to sensorially evaluate the possible wine-like aromas.

RESULTS: Unexpected chemical characteristics regarding the metal concentrations, sugar and acid composition as well as the aroma profile were found. Compared to current export regulations, the levels of heavy metals were considerably higher, possibly due to the bottle glass composition and leaching over time. The untargeted analyses showed various compounds including fermentation-derived products (esters, alcohols, aldehydes and fatty acids), terpenoids (linalool, fenchone) and “woody” compounds (furfural and guaiacol). Incredibly, some of the samples still presented wine-like features related to aroma both in the chemical and the sensory evaluation. 

CONCLUSIONS

Unlike other work where the source and/or type of beverage recovered from shipwrecks were known, and with a limited volume of sample, we could still obtain results providing interesting “chemical snapshots” of old wines using advanced analytical and spectroscopic techniques. Combining new technology platforms in analytical chemistry can provide valuable insight into the composition of wines recovered from shipwrecks with the help of maritime archaeologists. Including analyses such as X-ray diffraction on the bottles can assist in tracing more information about the sources of heavy metal content and possibly even the origin of the wines.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Astrid Buica

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa,Cody, WILLIAMS, Department of Viticulture and Oenology, Stellenbosch University, South Africa Jaco, BOSHOFF, Iziko Museums of South Africa, Maritime Archaeology Unit, Research and Exhibitions, Cape Town, South Africa Wendy, BLACK, Iziko Museums of South Africa, Archaeology Unit, Research & Exhibitions Department, Cape Town, South Africa Valeria, PANZERI, Department of Viticulture and Oenology, Stellenbosch University, South Africa

Contact the author

Keywords

marine archeology, shipwreck, untargeted analyses, metals, sugars and organic acids, sensory screening

Citation

Related articles…

Use of fumaric acid on must or during alcoholic fermentation

Fumaric acid has been approved by the OIV in 2021 for its application on wine to control the growth and activity of lactic acid bacteria. Fumaric acid is currently being evaluated by the OIV as an acidifier of must and wine. Investigations during the 2023 vintage provided further information on its use on must or during AF, thus completing information provided during the previous vintage.

Valuation of the fields viti-vinicoles by the landscapes

La prise en compte des paysages viticoles dans le développement durable ou l’aménagement du territoire est un thème non négligeable pour la valorisation de la filière viti-vinicole à l’échelle d’une exploitation ou d’une A.O.C.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

Classification and prediction of tannin botanical origin through voltammetry and machine learning approach

The classification of enological tannins has gained importance following the OIV’s requirement to include their botanical origin on product labels (OIV-OENO 624-2022).

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.