Macrowine 2021
IVES 9 IVES Conference Series 9 NMR profiling of grape musts from some italian regions

NMR profiling of grape musts from some italian regions

Abstract

With wine fraud, being a widespread problem [1], the need for more sophisticated and precise analytical methods of its detection remains ever persistent. Nuclear magnetic resonance (NMR) spectroscopy has been widely used for analysis of wine in recent years [2,3], but wine musts were much less studied; in fact, only one paper dealt with the NMR spectra of actual musts [4]. Difficulties arise mostly because grape musts are “live” objects, which undergo rapid fermentation at room temperature, if not inhibited either by freezing or chemical preservative; but even such measures are not sufficient to halt it completely [5]. We have investigated over 300 samples of grape must from 17 of 20 different Italian regions using 1H NMR spectroscopy with water signal suppression, postprocessing in the MatLab software with dynamic alignment [6] and optimized binning [7] to alleviate the effect of fermentation on the chemical shifts of mobile protons. After that, multivariate statistics was performed with techniques such as PCA, PLS-DA and OPLS-DA with respect to various group parameters such as regions, vitivinicultural zones, harvest periods and grape varieties. Advantages and drawbacks of each method were addressed.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Pavel Solovyev

Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all’Adige, Italy ,Matteo Perini, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all’Adige, Italy Pietro Franceschi, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all’Adige, Italy Luana Bontempo, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all’Adige, Italy Federica Camin, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all’Adige, Italy, University of Trento, via Mach 1, 38010 San Michele all’Adige (TN), Italy

Contact the author

Keywords

grape musts, nmr spectroscopy, profiling, multivariate statistics

Citation

Related articles…

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

Rare earth elements distribution in grape berries

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements.

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.