Macrowine 2021
IVES 9 IVES Conference Series 9 Yeast derivatives: a promising alternative in wine oxidation prevention?

Yeast derivatives: a promising alternative in wine oxidation prevention?

Abstract

AIM: Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1].Despite the mechanisms involved in wine oxidation have been extensively reviewed [2],the protection of wine against oxidative spoilage remains one of the main goals of winemaking. Moreover, oxidation of young white wines become particularly critical mostly when low levels of SO2 are used. SO2 is indeed one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines. In a competitive global winemaking market strategy, it is crucial to reduce or even eliminate the use of SO2 and to search for new healthier strategies. In the last decade, Yeast Derivatives (YDs) were proposed as a new strategy to control wine oxidation [3].These products are obtained from yeasts by hydrolytic processes and dried to obtain the commercial products. The aim of this work was to carry out a preliminary investigation of YDs with different composition on

(i) their capacity to prevent oxidation of white wine and

(ii) to evaluate their impact on wine quality.

METHODS: 2 YDs were used for all the experiments: a YDR naturally rich in reducing compounds and a YDL naturally rich in lipids. White wines vinified with no sulfite additions were supplemented with one of the YD and submitted at low and high oxidation: 4 mg/L and 8 mg/L of dissolved O2 respectively. A Pyroscience optical O2 sensor was used for the dissolved oxygen monitoring. Wines analyses were performed after the complete oxygen consumption: wine analysis (Foss), color (CIELab), glutathione (GSH, HPLC-fluo), ethanal (GC-MS), redox potential (cyclic voltammetry), sensorial analysis. These results were compared with those obtained for wines with no antioxidant treatment and with SO2 addition.

RESULTS: Results showed that yeast derivatives and SO2 permit to reduce the O2 consumption rate of 55 and 60% respectively than the untreated control without antioxidant. In comparison with the control wines, YD have an impact on color but they allow the reduction of wine browning. Voltammetry analyses showed that the wines treated by YD have a voltammetric profile suggesting that they are more resistant to oxidation than the untreated control. This behavior is comparable to wines treated with SO2. In addition, wines treated with YD present a lower ethanol amount than the control and SO2 wines. The YD naturally rich in reducing compounds show better preservation of wine’s GSH content. Finally, during wine sensorial analysis, the tasters prefer wines treated with YD than wine without treatment.

CONCLUSIONS

This work opens new perspectives for the development of yeast preparations usable as alternatives or as complements to sulfites and allows the improvement of white wines oxidative stability.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claudia Nioi

Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France ,Fabrice MEUNIER Amarante Process-ADERA, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Pascaline REDON Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Laurent RIQUIER Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Arnaud MASSOT Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France Virginie MOINE Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France

Contact the author

Keywords

yeast derivatives, oxidation, wine

Citation

Related articles…

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production

Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

As the climate warms, the focus of concern in viticulture often turns to how higher temperatures may shift growing regions, change the character of AVAs, and alter fruit quality. However, climate warming is increasing most quickly during the winter dormancy cycle, a critical and often underappreciated portion of the grapevine life cycle. In response to decreasing temperatures and decreasing daylength, grapes initiate a series of physiological changes to enter dormancy, acquire freeze resistance, and time spring phenology such that the growing season begins after threat of frost.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

Influence of protective colloids on tartrate stability, polysaccharide contents and volatile compound profile of a white wine

The tartaric salts precipitation is one of the main issues regarding wine instability 1. In addition to the well-known and deeply studied phenomena of potassium hydrogentartrate precipitation (KHT), the last decade has been increased the phenomena of calcium tartrate (CaT) precipitation, that is a concern for the wine industry 2.

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.