Macrowine 2021
IVES 9 IVES Conference Series 9 Yeast derivatives: a promising alternative in wine oxidation prevention?

Yeast derivatives: a promising alternative in wine oxidation prevention?

Abstract

AIM: Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1].Despite the mechanisms involved in wine oxidation have been extensively reviewed [2],the protection of wine against oxidative spoilage remains one of the main goals of winemaking. Moreover, oxidation of young white wines become particularly critical mostly when low levels of SO2 are used. SO2 is indeed one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines. In a competitive global winemaking market strategy, it is crucial to reduce or even eliminate the use of SO2 and to search for new healthier strategies. In the last decade, Yeast Derivatives (YDs) were proposed as a new strategy to control wine oxidation [3].These products are obtained from yeasts by hydrolytic processes and dried to obtain the commercial products. The aim of this work was to carry out a preliminary investigation of YDs with different composition on

(i) their capacity to prevent oxidation of white wine and

(ii) to evaluate their impact on wine quality.

METHODS: 2 YDs were used for all the experiments: a YDR naturally rich in reducing compounds and a YDL naturally rich in lipids. White wines vinified with no sulfite additions were supplemented with one of the YD and submitted at low and high oxidation: 4 mg/L and 8 mg/L of dissolved O2 respectively. A Pyroscience optical O2 sensor was used for the dissolved oxygen monitoring. Wines analyses were performed after the complete oxygen consumption: wine analysis (Foss), color (CIELab), glutathione (GSH, HPLC-fluo), ethanal (GC-MS), redox potential (cyclic voltammetry), sensorial analysis. These results were compared with those obtained for wines with no antioxidant treatment and with SO2 addition.

RESULTS: Results showed that yeast derivatives and SO2 permit to reduce the O2 consumption rate of 55 and 60% respectively than the untreated control without antioxidant. In comparison with the control wines, YD have an impact on color but they allow the reduction of wine browning. Voltammetry analyses showed that the wines treated by YD have a voltammetric profile suggesting that they are more resistant to oxidation than the untreated control. This behavior is comparable to wines treated with SO2. In addition, wines treated with YD present a lower ethanol amount than the control and SO2 wines. The YD naturally rich in reducing compounds show better preservation of wine’s GSH content. Finally, during wine sensorial analysis, the tasters prefer wines treated with YD than wine without treatment.

CONCLUSIONS

This work opens new perspectives for the development of yeast preparations usable as alternatives or as complements to sulfites and allows the improvement of white wines oxidative stability.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claudia Nioi

Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France ,Fabrice MEUNIER Amarante Process-ADERA, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Pascaline REDON Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Laurent RIQUIER Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Arnaud MASSOT Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France Virginie MOINE Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France

Contact the author

Keywords

yeast derivatives, oxidation, wine

Citation

Related articles…

Bilan de l’impact des pratiques viticoles sur la qualité biologique des sols

Dans le cadre de TerclimPro 2025, Laure Gontier a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8481

From the “climats de Bourgogne” to the terroir in bottles

From a chemical composition point of view, wine is the result of complex interplays between environmental, genetic and human factors. The notion of terroir in viticulture involves the vine and its environment, including phenology, geography, geology, pedology and local climate of a vineyard, along with human inputs.

Grapevine root system architecture: empirical insights and first steps towards in silico studies

Root System Architecture (RSA) is crucial for plant resilience and resource uptake, yet remains underexplored in viticulture.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

Terracing in steep slope viticulture and its potential to promote biodiversity in vineyard ecosystems

Viticulture on steep slopes has shaped exceptionally species-rich cultural landscapes in Germany.