Macrowine 2021
IVES 9 IVES Conference Series 9 Yeast derivatives: a promising alternative in wine oxidation prevention?

Yeast derivatives: a promising alternative in wine oxidation prevention?

Abstract

AIM: Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1].Despite the mechanisms involved in wine oxidation have been extensively reviewed [2],the protection of wine against oxidative spoilage remains one of the main goals of winemaking. Moreover, oxidation of young white wines become particularly critical mostly when low levels of SO2 are used. SO2 is indeed one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines. In a competitive global winemaking market strategy, it is crucial to reduce or even eliminate the use of SO2 and to search for new healthier strategies. In the last decade, Yeast Derivatives (YDs) were proposed as a new strategy to control wine oxidation [3].These products are obtained from yeasts by hydrolytic processes and dried to obtain the commercial products. The aim of this work was to carry out a preliminary investigation of YDs with different composition on

(i) their capacity to prevent oxidation of white wine and

(ii) to evaluate their impact on wine quality.

METHODS: 2 YDs were used for all the experiments: a YDR naturally rich in reducing compounds and a YDL naturally rich in lipids. White wines vinified with no sulfite additions were supplemented with one of the YD and submitted at low and high oxidation: 4 mg/L and 8 mg/L of dissolved O2 respectively. A Pyroscience optical O2 sensor was used for the dissolved oxygen monitoring. Wines analyses were performed after the complete oxygen consumption: wine analysis (Foss), color (CIELab), glutathione (GSH, HPLC-fluo), ethanal (GC-MS), redox potential (cyclic voltammetry), sensorial analysis. These results were compared with those obtained for wines with no antioxidant treatment and with SO2 addition.

RESULTS: Results showed that yeast derivatives and SO2 permit to reduce the O2 consumption rate of 55 and 60% respectively than the untreated control without antioxidant. In comparison with the control wines, YD have an impact on color but they allow the reduction of wine browning. Voltammetry analyses showed that the wines treated by YD have a voltammetric profile suggesting that they are more resistant to oxidation than the untreated control. This behavior is comparable to wines treated with SO2. In addition, wines treated with YD present a lower ethanol amount than the control and SO2 wines. The YD naturally rich in reducing compounds show better preservation of wine’s GSH content. Finally, during wine sensorial analysis, the tasters prefer wines treated with YD than wine without treatment.

CONCLUSIONS

This work opens new perspectives for the development of yeast preparations usable as alternatives or as complements to sulfites and allows the improvement of white wines oxidative stability.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claudia Nioi

Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France ,Fabrice MEUNIER Amarante Process-ADERA, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Pascaline REDON Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Laurent RIQUIER Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Arnaud MASSOT Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France Virginie MOINE Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France

Contact the author

Keywords

yeast derivatives, oxidation, wine

Citation

Related articles…

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.

Adsorption capacity of phenolics compounds by polyaniline materials in model solution

The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions. METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.