Macrowine 2021
IVES 9 IVES Conference Series 9 Yeast derivatives: a promising alternative in wine oxidation prevention?

Yeast derivatives: a promising alternative in wine oxidation prevention?

Abstract

AIM: Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1].Despite the mechanisms involved in wine oxidation have been extensively reviewed [2],the protection of wine against oxidative spoilage remains one of the main goals of winemaking. Moreover, oxidation of young white wines become particularly critical mostly when low levels of SO2 are used. SO2 is indeed one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines. In a competitive global winemaking market strategy, it is crucial to reduce or even eliminate the use of SO2 and to search for new healthier strategies. In the last decade, Yeast Derivatives (YDs) were proposed as a new strategy to control wine oxidation [3].These products are obtained from yeasts by hydrolytic processes and dried to obtain the commercial products. The aim of this work was to carry out a preliminary investigation of YDs with different composition on

(i) their capacity to prevent oxidation of white wine and

(ii) to evaluate their impact on wine quality.

METHODS: 2 YDs were used for all the experiments: a YDR naturally rich in reducing compounds and a YDL naturally rich in lipids. White wines vinified with no sulfite additions were supplemented with one of the YD and submitted at low and high oxidation: 4 mg/L and 8 mg/L of dissolved O2 respectively. A Pyroscience optical O2 sensor was used for the dissolved oxygen monitoring. Wines analyses were performed after the complete oxygen consumption: wine analysis (Foss), color (CIELab), glutathione (GSH, HPLC-fluo), ethanal (GC-MS), redox potential (cyclic voltammetry), sensorial analysis. These results were compared with those obtained for wines with no antioxidant treatment and with SO2 addition.

RESULTS: Results showed that yeast derivatives and SO2 permit to reduce the O2 consumption rate of 55 and 60% respectively than the untreated control without antioxidant. In comparison with the control wines, YD have an impact on color but they allow the reduction of wine browning. Voltammetry analyses showed that the wines treated by YD have a voltammetric profile suggesting that they are more resistant to oxidation than the untreated control. This behavior is comparable to wines treated with SO2. In addition, wines treated with YD present a lower ethanol amount than the control and SO2 wines. The YD naturally rich in reducing compounds show better preservation of wine’s GSH content. Finally, during wine sensorial analysis, the tasters prefer wines treated with YD than wine without treatment.

CONCLUSIONS

This work opens new perspectives for the development of yeast preparations usable as alternatives or as complements to sulfites and allows the improvement of white wines oxidative stability.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claudia Nioi

Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France ,Fabrice MEUNIER Amarante Process-ADERA, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Pascaline REDON Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Laurent RIQUIER Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, Bordeaux INP, ISVV, F33882 Villenave d’Ornon France  Arnaud MASSOT Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France Virginie MOINE Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France

Contact the author

Keywords

yeast derivatives, oxidation, wine

Citation

Related articles…

A procedure for the zoning of grapevine in a hilly area (Collio, North-Eastern Italy) using simulation models and GIS

The zoning of grapevine in a hilly area should consider the variability of the environmental characteristics due to topography. Since soil and climate data are usually available as point data

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

As a result of climate change consequences, there is a gap between the times at which the grapes reach the phenolic and the technology maturities.

In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

Italy is a rich hub of viticultural biodiversity harboring hundreds of indigenous grape varieties that have adapted over centuries to the diverse climatic and geographic conditions of its regions. Preserving this biodiversity is essential for maintaining a diversified genetic pool, crucial for addressing future challenges such as climate change and emerging plant diseases. Rising temperatures, precipitation pattern variations, and extreme weather events can affect grape ripening, crop quality, and contribute to disease development. Integrated disease management necessitates exploration of novel strategies. Biotechnologies emerge as a significant player in tackling modern viticulture challenges.

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.