Macrowine 2021
IVES 9 IVES Conference Series 9 Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

Abstract

AIM: This study aimed to explore an alternative fate of varietal thiols by identifying and characterising cis-2-methyl-4-propyl-1,3-oxathiane (cis-2-MPO) and cis-2,4,4,6-tetramethyl-1,3-oxathiane (cis-TTMO) in wine. Elucidating these new pathways could aid in explaining the loss of varietal thiols and would further our understanding of the stereochemical relationships between oxathianes and varietal thiols.

METHODS: GC-MS was used to identify cis-2-MPO,1 and a stable isotope dilution assay (SIDA) was developed to quantify its enantiomers after separation with a chiral β-cyclodextrin GC column.2 Varietal thiols and their enantiomers were analysed by SIDA with HPLC-MS/MS to determine their relationship with cis-2-MPO. Production of cis-2-MPO and its correlation with 3-SH, 3-SHA, and acetaldehyde was studied by profiling the evolution of these volatiles during alcoholic fermentation (AF) of Sauvignon blanc (SB) juice fermented with J7, VIN13, and their co-inoculum.3

RESULTS: cis-2-MPO, derived from 3-SH and acetaldehyde, was identified and then measured at up to 460 ng/L (equivalent to 385 ng/L of 3-SH) in a set of wines. Analysis of (2R,4S)-2-MPO and (2S,4R)-2-MPO, arising from thiol enantiomers (3S)-3-SH and (3R)-3-SH, showed respective concentrations of up to 250 and 303 ng/L. The enantiomeric ratio of (2R,4S)-/(2S,4R)-2-MPO was 43:57 whereas that of (3S)-/(3R)-3-SH in the same wines was 51:49.2 Strong correlations were revealed for both 3-SH and cis-2-MPO and their related enantiomeric pairs.The AF study showed cis-2-MPO was produced from an early stage of AF and reached a peak of 847 ng/L (VIN13 ferment) before gradually declining to 50-65 ng/L. Its evolution profile was identical to that of acetaldehyde and 3-SHA, with moderate to strong correlations found for the analytes.Additionally, cis-TTMO, derived from 4-MSPOH and acetaldehyde, was identified in wine as a single enantiomer at concentrations of up to 28 ng/L (equivalent to 23 ng/L of 4-MSPOH). An aroma detection threshold of 14.9 µg/L was determined for cis-TTMO, and this new volatile was described as ‘citrus’, ‘green’, ‘sweet/caramel’, and ‘mango’, shifting toward ‘onion/sweaty’ and ‘sulfurous’ at higher concentrations.2

CONCLUSIONS

The knowledge gained helps rationalise the fate of varietal thiols via the production of oxathianes in wine, and reveals the stereochemical links between these related compounds. A chemical formation pathway to oxathianes was verified and may also apply to other thiols bearing the 1,3-sulfanylalkanol substitution through the reaction with acetaldehyde.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xingchen Wang

Department of Wine Science and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia,Liang, CHEN, Université de Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, 33882, Villenave d’Ornon cedex, France Dimitra L., CAPONE, Department of Wine Science and Waite Research Institute, Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia Aurélie, ROLAND, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France David W., JEFFERY, Department of Wine Science and Waite Research Institute, Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

3-sulfanylhexan-1-ol, 4-methyl-4-sulfanylpentan-2-ol, acetaldehyde, chiral stationary phase, odour detection threshold, sauvignon blanc, stable isotope dilution assay, gas chromatography–mass spectrometry

Citation

Related articles…

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol).

Histoire des Vitis depuis leurs origines possibles sur la Pangée jusqu’aux cépages cultivés : un exemple de résilience liée à la biodiversité des espèces

The first forms of life on earth were bacteria and single-celled blue-green algae. They evolved into land plants around 500 million years ago, developing mechanisms for surviving on land, such as roots, stems and leaves. This evolution also led them to coexist with other organisms, such as insects and animals, for pollination and seed dispersal, as well as to resist environmental factors such as drought and disease.

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.