Macrowine 2021
IVES 9 IVES Conference Series 9 Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

Alternative fate of varietal thiols in wine: identification, formation, and enantiomeric distribution of novel 1,3-oxathianes

Abstract

AIM: This study aimed to explore an alternative fate of varietal thiols by identifying and characterising cis-2-methyl-4-propyl-1,3-oxathiane (cis-2-MPO) and cis-2,4,4,6-tetramethyl-1,3-oxathiane (cis-TTMO) in wine. Elucidating these new pathways could aid in explaining the loss of varietal thiols and would further our understanding of the stereochemical relationships between oxathianes and varietal thiols.

METHODS: GC-MS was used to identify cis-2-MPO,1 and a stable isotope dilution assay (SIDA) was developed to quantify its enantiomers after separation with a chiral β-cyclodextrin GC column.2 Varietal thiols and their enantiomers were analysed by SIDA with HPLC-MS/MS to determine their relationship with cis-2-MPO. Production of cis-2-MPO and its correlation with 3-SH, 3-SHA, and acetaldehyde was studied by profiling the evolution of these volatiles during alcoholic fermentation (AF) of Sauvignon blanc (SB) juice fermented with J7, VIN13, and their co-inoculum.3

RESULTS: cis-2-MPO, derived from 3-SH and acetaldehyde, was identified and then measured at up to 460 ng/L (equivalent to 385 ng/L of 3-SH) in a set of wines. Analysis of (2R,4S)-2-MPO and (2S,4R)-2-MPO, arising from thiol enantiomers (3S)-3-SH and (3R)-3-SH, showed respective concentrations of up to 250 and 303 ng/L. The enantiomeric ratio of (2R,4S)-/(2S,4R)-2-MPO was 43:57 whereas that of (3S)-/(3R)-3-SH in the same wines was 51:49.2 Strong correlations were revealed for both 3-SH and cis-2-MPO and their related enantiomeric pairs.The AF study showed cis-2-MPO was produced from an early stage of AF and reached a peak of 847 ng/L (VIN13 ferment) before gradually declining to 50-65 ng/L. Its evolution profile was identical to that of acetaldehyde and 3-SHA, with moderate to strong correlations found for the analytes.Additionally, cis-TTMO, derived from 4-MSPOH and acetaldehyde, was identified in wine as a single enantiomer at concentrations of up to 28 ng/L (equivalent to 23 ng/L of 4-MSPOH). An aroma detection threshold of 14.9 µg/L was determined for cis-TTMO, and this new volatile was described as ‘citrus’, ‘green’, ‘sweet/caramel’, and ‘mango’, shifting toward ‘onion/sweaty’ and ‘sulfurous’ at higher concentrations.2

CONCLUSIONS

The knowledge gained helps rationalise the fate of varietal thiols via the production of oxathianes in wine, and reveals the stereochemical links between these related compounds. A chemical formation pathway to oxathianes was verified and may also apply to other thiols bearing the 1,3-sulfanylalkanol substitution through the reaction with acetaldehyde.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Xingchen Wang

Department of Wine Science and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia,Liang, CHEN, Université de Bordeaux, Unité de Recherche Œnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, 33882, Villenave d’Ornon cedex, France Dimitra L., CAPONE, Department of Wine Science and Waite Research Institute, Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia Aurélie, ROLAND, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France David W., JEFFERY, Department of Wine Science and Waite Research Institute, Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

3-sulfanylhexan-1-ol, 4-methyl-4-sulfanylpentan-2-ol, acetaldehyde, chiral stationary phase, odour detection threshold, sauvignon blanc, stable isotope dilution assay, gas chromatography–mass spectrometry

Citation

Related articles…

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).

SmartGrape: early detection of cicada-borne vine diseases using field spectroscopy and detection of volatile plant scents

Bois noir (BN) is a cicada-transmitted grapevine disease that today causes up to 50% yield and vine loss in vineyards. It is caused by the phytoplasma Candidatus Phytoplasma solani (16SrXII-A).

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

AIM: Combined investigation of the influence of berry maturity, maceration time and wine maturation on the changes in polyphenols and sensory characteristics of Pinot noir and Cabernet-Sauvignon.

Unveiling the secrets of catechin: insights from NMR spectroscopy

Catechins, a class of flavonoids found in foods and beverages such as wine and tea, exhibit potent antioxidant properties that contribute to various health benefits.[1]